The evolution of a Ti film/silumin substrate system irradiated by a pulse electron beam
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 3, pp. 50-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The electron beam treatment of metal surfaces involves the use of intense pulsed electron beams to improve a wide range of surface properties of different materials. Research has shown that it can lead to a marked reduction in surface roughness and porosity and a marked increase in tensile strength and ductility. Processed samples also have improved hardness, wear resistance, and anti-corrosion properties, which emphasizes the effectiveness of electron beam surface treatment in materials science. This work studies the irradiation of a Ti film/silumin substrate system showing it leads to the transformation of both the Ti film and the silumin layer with different energy densities, which has a different effect on the structure and composition. When treated with an electron beam at an energy density of 30 J/cm$^2$, the Ti film and the silumin layer undergo complete dissolution, resulting in a complex submicron crystalline structure characterized by the presence of silicon particles distributed along grain boundaries. Irradiation with an electron beam of the Ti film/silumin substrate system at different energy densities (10, 15, 30 J/cm$^2$) leads to a change in surface morphology, crystallite size, and phase composition, and an increase in energy density leads to the melting of the Ti film and the silumin layer.
Mots-clés : silumin, elemental and phase composition
Keywords: titanium, film/substrate system, pulsed electron beam, defect substructure.
@article{VYURM_2024_16_3_a7,
     author = {D. V. Zaguliaev and Yu. F. Ivanov and O. S. Tolkachev and V. V. Shlyarov and Yu. A. Shlyarova},
     title = {The evolution of a {Ti} film/silumin substrate system irradiated by a pulse electron beam},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {50--61},
     year = {2024},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a7/}
}
TY  - JOUR
AU  - D. V. Zaguliaev
AU  - Yu. F. Ivanov
AU  - O. S. Tolkachev
AU  - V. V. Shlyarov
AU  - Yu. A. Shlyarova
TI  - The evolution of a Ti film/silumin substrate system irradiated by a pulse electron beam
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2024
SP  - 50
EP  - 61
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a7/
LA  - ru
ID  - VYURM_2024_16_3_a7
ER  - 
%0 Journal Article
%A D. V. Zaguliaev
%A Yu. F. Ivanov
%A O. S. Tolkachev
%A V. V. Shlyarov
%A Yu. A. Shlyarova
%T The evolution of a Ti film/silumin substrate system irradiated by a pulse electron beam
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2024
%P 50-61
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a7/
%G ru
%F VYURM_2024_16_3_a7
D. V. Zaguliaev; Yu. F. Ivanov; O. S. Tolkachev; V. V. Shlyarov; Yu. A. Shlyarova. The evolution of a Ti film/silumin substrate system irradiated by a pulse electron beam. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 3, pp. 50-61. http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a7/

[1] A. Panin, M. Kazachenok, L. Kazantseva, S. Martynov, M. Korchagin, “Electron Beam Additive Manufacturing of TiB$_2$/Ti-6Al-4V Composite”, Proc. AIP Conf., 2167 (2019), 020263 | DOI

[2] S. Basak, S. K. Sharma, M. Mondal, K. K. Sahu, S. Gollapudi, J. D. Majumdar, S. T. Hong, “Electron Beam Surface Treatment of 316L Austenitic Stainless Steel: Improvements in Hardness, Wear, and Corrosion Resistance”, Metals and Materials International, 27 (2021), 953–961 | DOI

[3] S. Valkov, M. Ormanova, P. Petrov, “Electron-Beam Surface Treatment of Metals and Alloys: Techniques and Trends”, Metals, 10:9 (2020), 1219 | DOI

[4] S. Nevskii, V. Sarychev, S. Konovalov, A. Granovskii, V. Gromov, “Formation Mechanism of Micro- and Nanocrystalline Surface Layers in Titanium and Aluminum Alloys in Electron Beam Irradiation”, Metals, 10:10 (2020), 1399 | DOI

[5] D. Lee, B. Kim, S. M. Baek, J. Kim, H. W. Park, J. G. Lee, S. S. Park, “Microstructure and Corrosion Resistance of A Mg$_2$Sn-dispersed Mg Alloy Subjected to Pulsed Electron Beam Treatment”, Journal of Magnesium and Alloys, 8:2 (2020), 345–351 | DOI

[6] Y. Geng, I. Panchenko, S. Konovalov, X. Chen, Yu. Ivanov, “Effect of Electron Beam Energy Densities on The Surface Morphology and Tensile Property of Additively Manufactured Al-Mg Alloy”, Nuclear Instruments and Methods in Physics Research Section, 498 (2021), 15–22 | DOI

[7] S. Valkov, S. Parshorov, A. Andreeva, S. Rabadzhiyska, M. Nikolova, R. Bezdushnyi, P. Petrov, “Influence of Beam Power on The Surface Architecture and Corrosion Behavior of Electron-beam Treated Co-Cr-Mo Alloys”, Nuclear Instruments and Methods in Physics Research Section, 494–495 (2021), 46–52 | DOI

[8] P. Smolarczyk, M. Krupi?ski, “Thermal-Derivative Analysis and Precipitation Hardening of the Hypoeutectic Al-Si-Cu Alloys”, Archives of Foundry Engineering, 19:1 (2019), 41–46 | DOI

[9] Y. Hao, B. Gao, G. F. Tu, S. W. Li, C. Dong, Z. G. Zhang, “Improved Wear Resistance of Al-15Si Alloy with a High Current Pulsed Electron Beam Treatment”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 269:13 (2011), 1499–1505 | DOI

[10] B. Gao, Y. Hao, W. F. Zhuang, G. F. Tu, W. X. Shi, S. W. Li, S. Z. Hao, C. Dong, M. C. Li, “Study on Continuous Solid Solution of Al and Si Elements of a High Current Pulsed Electron Beam Treated Hypereutectic Al17.5Si”, Alloy. Phys. Procedia, 18 (2011), 187–192 | DOI

[11] F. Mao, M. Weidt, F. Roeser, J. Thorborg, L. Barrales-Mora, “Integrated Property Predictions During Casting and Heat Treatment of Al-Si-Cu-Mg Alloys By Precipitation Simulation”, IOP Conference Series: Materials Science and Engineering, 1281 (2023), 012043 | DOI

[12] I. Hren, J. Svobodová, Š. Michna, “Influence of Al5FeSi Phases on the Cracking of Castings at Al-Si Alloys”, Archives of Foundry Engineering, 18:4 (2018), 120–124 | DOI

[13] Yu. A. Denisova et al, Evolution of the Structure of the Surface layer of Steel Subjected to Electron-Ion-Plasma Processing Methods, Izd-vo NTL Publ., Tomsk, 2016, 303 pp. (in Russ.)

[14] Yu. Kh. Akhmadeev, V. V. Denisov, Yu. F. Ivanov et al, Electron-Ion-Plasma Surface Modification of Non-Ferrous Metals and Alloys, Izd-vo NTL Publ., Tomsk, 2016, 308 pp. (in Russ.)

[15] N. A. Belov, S. V. Savchenko, A. V. Khvan, Phase Composition and Structure of Silumins, MISIS, M., 2008, 281 pp. (in Russ.)