Symmetry analysis of the Bellman equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 3, pp. 32-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The optimal correction of a material point’s trajectory under small perturbations is an important problem in control theory. The study of such processes can be reduced to solving a boundary value problem for a special nonlinear second-order partial differential equation known as the Bellman equation. This paper deals with a partial differential equation with quadratic nonlinearity, which is a special case of the Bellman equation. The equation contains three independent variables—one temporal and two spatial, and two arbitrary time-dependent functions as multipliers. Multidimensionality is a distinctive feature of this equation, which significantly complicates its analytical study. Therefore, we use Lie group analysis which is an effective technique to analytically study nonlinear partial differential equations. It allows the investigation of not only the symmetry properties of equations, but also to find their particular solutions. The problem of group classification for this Bellman equation is solved with respect to two arbitrary time-dependent functions. It is established that in the case of the arbitrariness of these functions, the equation admits a four-parameter group of point transformations. This group expands to five-parameter and six-parameter groups for the parametric representation and linear dependency of the functions, respectively. Several invariant solutions are also constructed.
Mots-clés : Bellman type equation, group of point transformations, invariant solution.
@article{VYURM_2024_16_3_a4,
     author = {D. I. Kamaletdinova and V. O. Lukashchuk},
     title = {Symmetry analysis of the {Bellman} equation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {32--37},
     year = {2024},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a4/}
}
TY  - JOUR
AU  - D. I. Kamaletdinova
AU  - V. O. Lukashchuk
TI  - Symmetry analysis of the Bellman equation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2024
SP  - 32
EP  - 37
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a4/
LA  - ru
ID  - VYURM_2024_16_3_a4
ER  - 
%0 Journal Article
%A D. I. Kamaletdinova
%A V. O. Lukashchuk
%T Symmetry analysis of the Bellman equation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2024
%P 32-37
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a4/
%G ru
%F VYURM_2024_16_3_a4
D. I. Kamaletdinova; V. O. Lukashchuk. Symmetry analysis of the Bellman equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 3, pp. 32-37. http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a4/

[1] V. I. Van'ko, O. V. Ermoshina, G. N. Kuvyrkin, Calculus of Variations and Optimal Control, MGTU im. N.E. Baumana Publ., 2006, 488 pp. (in Russ.)

[2] F. L. Chernousko, “Self-Similar Solutions of the Bellman Equation for Optimal Correction of Random Disturbances”, Prikladnaya matematika i mekhanika, 35:2 (1971), 333–342 (in Russ.) | Zbl

[3] F. L. Chernous'ko, V. B. Kolmanovskiy, Optimal Control for Random Disturbances, Nauka, M., 1978, 351 pp. (in Russ.)

[4] Ibragimov N.H., A Practical Course in Differential Equations and Mathematical Modeling, Higher Education Press Limited Company, 2009, 364 pp. | MR

[5] A. S. Polyakevich, B. N. Poizner, “Advantages of Group Analysis of Differential Equations in Solution of Some Problems of Laser System Optimum Control”, Optika atmosfery i okeana, 8:11 (1995), 1697–1699 (in Russ.)

[6] K. G. Garaev, V. A. Ovchinnikov, “Invariant Boundary Value Problems of an Optimally Controlled Boundary Layer”, Prikladnaya mekhanika i tekhnicheskaya fizika, 44:1 (257) (2003), 33–38 (in Russ.) | MR | Zbl

[7] A. D. Polyanin, V. F. Zaytsev, A. I. Zhurov, Methods for Solving Nonlinear Equations of Mathematical Physics and Mechanics, Fizmatlit, M., 2009, 256 pp. (in Russ.)

[8] L. V. Ovsyannikov, Group Properties of Differential Equations, SO AN SSSR Publ, Novosibirsk, 1962, 238 pp. (in Russ.) | MR