Invariant spaces of stochastic systems of Oskolkov equations
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 3, pp. 27-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers a linear stochastic system of Oskolkov equations, which models the flow of a viscoelastic incompressible fluid and studies the stability of the solutions of this system. For this purpose, the stochastic system of Oskolkov equations is considered in the form of a Sobolev-type stochastic linear equation. The desired value is a stochastic process that does not have a Newton–Leibniz derivative at any point. Therefore, we use the derivative of the stochastic process in the sense of Nelson–Gliklich. It is shown that for certain parameter values characterizing the elastic and viscous properties of a liquid there are unstable and stable invariant spaces of a stochastic system of Oskolkov equations.
Keywords: stochastic system of Oskolkov equations
Mots-clés : Nelson-Gliklich equation, invariant spaces.
@article{VYURM_2024_16_3_a3,
     author = {O. G. Kitaeva},
     title = {Invariant spaces of stochastic systems of {Oskolkov} equations},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {27--31},
     year = {2024},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a3/}
}
TY  - JOUR
AU  - O. G. Kitaeva
TI  - Invariant spaces of stochastic systems of Oskolkov equations
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2024
SP  - 27
EP  - 31
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a3/
LA  - ru
ID  - VYURM_2024_16_3_a3
ER  - 
%0 Journal Article
%A O. G. Kitaeva
%T Invariant spaces of stochastic systems of Oskolkov equations
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2024
%P 27-31
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a3/
%G ru
%F VYURM_2024_16_3_a3
O. G. Kitaeva. Invariant spaces of stochastic systems of Oskolkov equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 3, pp. 27-31. http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a3/

[1] A. P. Oskolkov, “Nonlocal Problems for One Class of Nonlinear Operator Equations that Arise in the Theory of Sobolev Type Equations”, Zapiski nauch. seminarov LOMI, 198, 1991, 31–48 (in Russ.) | Zbl

[2] A. Favini, G.A. Sviridyuk, N.A. Manakova, “Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of “Noises””, Abstract and Applied Analysis, 2015 (2015), 697410 | DOI | MR | Zbl

[3] G.A. Sviridiuk, M.A. Sagadeeva, “Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of “Noises””, Mediterranean Journal of Mathematics, 13:6 (2016), 4607–4621 | DOI | MR

[4] A. Favini, G.A. Sviridyuk, A.A. Zamyshlyaeva, “One Class of Sobolev Type Equations of Higher Order with Additive “White Noise””, Communications on Pure and Applied Analysis, 15:1 (2016), 185–196 | DOI | MR | Zbl

[5] A. Favini, S.A. Zagrebina, G.A. Sviridyuk, “Multipoint Initial-Final Value Problems for Dynamical Sobolev-type Equations in the Space of Noises”, Electronic Journal of Differential Equations, 2018:128 (2018), 1–10 | MR

[6] Yu.E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London–Dordrecht–Heidelberg–N.Y., 2011, 436 pp. | DOI | MR | Zbl

[7] G. A. Sviridyuk, M. M. Yakupov, “The Phase Space of The Initial-Boundary Value Problem for the Oskolkov System”, Differential Equations, 32:11 (1996), 1535–1540 | MR | Zbl

[8] G. A. Sviridyuk, “Semilinear Equations of the Sobolev Type with Relatively Bounded Operators”, Soviet Math. Dokl., 43:3 (1992), 797–801 | MR | Zbl

[9] O.G. Kitaeva, “Exponential Dichotomies of a Non-Classical Equations of Differential Forms on a Two-Dimensional Torus with “Noises””, Journal of Computational and Engineering Mathematics, 6:3 (2019), 26–38 | DOI | MR | Zbl

[10] O.G. Kitaeva, “Stable and Unstable Invariant Spaces of One Stochastic Non-Classical Equation with a Relatively Radial Operator on a 3-Torus”, Journal of Computational and Engineering Mathematics, 7:2 (2020), 40–49 | DOI | Zbl

[11] O.G. Kitaeva, “Stabilization of the Stochastic Barenblatt-Zheltov-Kochina Equation”, Journal of Computational and Engineering Mathematics, 10:1 (2023), 21–29 | DOI