Mots-clés : Nelson-Gliklich equation, invariant spaces.
@article{VYURM_2024_16_3_a3,
author = {O. G. Kitaeva},
title = {Invariant spaces of stochastic systems of {Oskolkov} equations},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {27--31},
year = {2024},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a3/}
}
TY - JOUR AU - O. G. Kitaeva TI - Invariant spaces of stochastic systems of Oskolkov equations JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2024 SP - 27 EP - 31 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a3/ LA - ru ID - VYURM_2024_16_3_a3 ER -
%0 Journal Article %A O. G. Kitaeva %T Invariant spaces of stochastic systems of Oskolkov equations %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2024 %P 27-31 %V 16 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a3/ %G ru %F VYURM_2024_16_3_a3
O. G. Kitaeva. Invariant spaces of stochastic systems of Oskolkov equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 3, pp. 27-31. http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a3/
[1] A. P. Oskolkov, “Nonlocal Problems for One Class of Nonlinear Operator Equations that Arise in the Theory of Sobolev Type Equations”, Zapiski nauch. seminarov LOMI, 198, 1991, 31–48 (in Russ.) | Zbl
[2] A. Favini, G.A. Sviridyuk, N.A. Manakova, “Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of “Noises””, Abstract and Applied Analysis, 2015 (2015), 697410 | DOI | MR | Zbl
[3] G.A. Sviridiuk, M.A. Sagadeeva, “Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of “Noises””, Mediterranean Journal of Mathematics, 13:6 (2016), 4607–4621 | DOI | MR
[4] A. Favini, G.A. Sviridyuk, A.A. Zamyshlyaeva, “One Class of Sobolev Type Equations of Higher Order with Additive “White Noise””, Communications on Pure and Applied Analysis, 15:1 (2016), 185–196 | DOI | MR | Zbl
[5] A. Favini, S.A. Zagrebina, G.A. Sviridyuk, “Multipoint Initial-Final Value Problems for Dynamical Sobolev-type Equations in the Space of Noises”, Electronic Journal of Differential Equations, 2018:128 (2018), 1–10 | MR
[6] Yu.E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London–Dordrecht–Heidelberg–N.Y., 2011, 436 pp. | DOI | MR | Zbl
[7] G. A. Sviridyuk, M. M. Yakupov, “The Phase Space of The Initial-Boundary Value Problem for the Oskolkov System”, Differential Equations, 32:11 (1996), 1535–1540 | MR | Zbl
[8] G. A. Sviridyuk, “Semilinear Equations of the Sobolev Type with Relatively Bounded Operators”, Soviet Math. Dokl., 43:3 (1992), 797–801 | MR | Zbl
[9] O.G. Kitaeva, “Exponential Dichotomies of a Non-Classical Equations of Differential Forms on a Two-Dimensional Torus with “Noises””, Journal of Computational and Engineering Mathematics, 6:3 (2019), 26–38 | DOI | MR | Zbl
[10] O.G. Kitaeva, “Stable and Unstable Invariant Spaces of One Stochastic Non-Classical Equation with a Relatively Radial Operator on a 3-Torus”, Journal of Computational and Engineering Mathematics, 7:2 (2020), 40–49 | DOI | Zbl
[11] O.G. Kitaeva, “Stabilization of the Stochastic Barenblatt-Zheltov-Kochina Equation”, Journal of Computational and Engineering Mathematics, 10:1 (2023), 21–29 | DOI