The biharmonic Neumann problem with double involution
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 3, pp. 18-26

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the solvability of a new class of boundary value problems with nonlocal Neumann conditions for a biharmonic equation in a sphere. Non-local conditions are specified in the form of a connection between the values of the desired function at different points of the boundary. In this case, the boundary operator is determined using matrices of involution-type mappings. The theorem of existence the and uniqueness of the solution is proved and the integral representation of the solution to the problem under consideration is found.
Keywords: nonlocal Neumann problem, biharmonic equation, solvability conditions, Green's function.
@article{VYURM_2024_16_3_a2,
     author = {V. V. Karachik},
     title = {The biharmonic {Neumann} problem with double involution},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {18--26},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a2/}
}
TY  - JOUR
AU  - V. V. Karachik
TI  - The biharmonic Neumann problem with double involution
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2024
SP  - 18
EP  - 26
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a2/
LA  - ru
ID  - VYURM_2024_16_3_a2
ER  - 
%0 Journal Article
%A V. V. Karachik
%T The biharmonic Neumann problem with double involution
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2024
%P 18-26
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a2/
%G ru
%F VYURM_2024_16_3_a2
V. V. Karachik. The biharmonic Neumann problem with double involution. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 3, pp. 18-26. http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a2/