The biharmonic Neumann problem with double involution
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 3, pp. 18-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper studies the solvability of a new class of boundary value problems with nonlocal Neumann conditions for a biharmonic equation in a sphere. Non-local conditions are specified in the form of a connection between the values of the desired function at different points of the boundary. In this case, the boundary operator is determined using matrices of involution-type mappings. The theorem of existence the and uniqueness of the solution is proved and the integral representation of the solution to the problem under consideration is found.
Keywords: nonlocal Neumann problem, biharmonic equation, solvability conditions, Green's function.
@article{VYURM_2024_16_3_a2,
     author = {V. V. Karachik},
     title = {The biharmonic {Neumann} problem with double involution},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {18--26},
     year = {2024},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a2/}
}
TY  - JOUR
AU  - V. V. Karachik
TI  - The biharmonic Neumann problem with double involution
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2024
SP  - 18
EP  - 26
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a2/
LA  - ru
ID  - VYURM_2024_16_3_a2
ER  - 
%0 Journal Article
%A V. V. Karachik
%T The biharmonic Neumann problem with double involution
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2024
%P 18-26
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a2/
%G ru
%F VYURM_2024_16_3_a2
V. V. Karachik. The biharmonic Neumann problem with double involution. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 3, pp. 18-26. http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a2/

[1] A. V. Bitsadze, A. A. Samarskii, “Some Elementary Generalizations of Linear Elliptic Boundary Value Problems”, Dokl. Akad. Nauk SSSR, 185:4 (1969), 739–740 (in Russ.) | Zbl

[2] A. A. Samarskii, “Some Problems of the Theory of Differential Equations”, Differ. Uravn., 16:11 (1980), 1925–1935 (in Russ.)

[3] A.L. Skubachevskii, “Nonclassical Boundary-Value Problems I”, J. Math. Sci., 155 (2008), 199–334 | DOI | MR | Zbl

[4] N. Adil, A. S. Berdyshev, B. E. Eshmatov, Z. D. Baishemirov, “Solvability and Volterra Property of Nonlocal Problems for Mixed Fractional-Order Diffusion-Wave Equation”, Bound Value Probl., 2023 (2023), 47 | DOI | MR | Zbl

[5] C. Ashyralyyev, “On the Stable Difference Scheme for Source Identification Nonlocal Elliptic Problem”, Math. Meth. Appl. Sci., 46:2 (2023), 2488–2499 | DOI | MR | Zbl

[6] A.T. Assanova, R. Uteshova, “Solution of a nonlocal problem for hyperbolic equations with piecewise constant argument of generalized type”, Chaos, Solitons Fractals, 165:2 (2022), 112816 | DOI | MR | Zbl

[7] L. Zhou, H. Yu, “Error Estimate of a High Accuracy Difference Scheme for Poisson Equation with two Integral Boundary Conditions”, Adv. Differ. Equ., 2018, 225 | DOI | MR

[8] C. Li, “Uniqueness of a Nonlinear Integro-Differential Equation with Nonlocal Boundary Condition and Variable Coefficients”, Bound Value Probl., 2023 (2023), 26 | DOI | MR | Zbl

[9] D.Przeworska-Rolewicz, “Some Boundary Value Problems with Transformed Argument”, Comment. Math. Helv., 1974, no. 17, 451–457 | MR | Zbl

[10] V. Karachik, B. Turmetov, “Solvability of one Nonlocal Dirichlet Problem for the Poisson Equation”, Novi Sad J. Math., 50:1 (2020), 67–88 | DOI | Zbl

[11] B. Turmetov, V. Karachik, “Solvability of Nonlocal Dirichlet Problem for Generalized Helmholtz Equation in a Unit Ball”, Complex Var. Elliptic Equ., 68:7 (2023), 1204–1218 | DOI | MR | Zbl

[12] B. Kh. Turmetov, V. V. Karachik, “Neumann Boundary Condition for a Nonlocal Biharmonic Equation”, Bulletin of the South Ural State University. Series “Mathematics. Mechanics. Physics”, 14:2 (2022), 51–58 (in Russ.) | DOI | Zbl

[13] V.V. Karachik, A.M. Sarsenbi, B.K. Turmetov, “On the Solvability of the Main Boundary Value Problems for a Nonlocal Poisson Equation”, Turk. J. Math., 43 (2019), 1604–1625 | DOI | MR | Zbl

[14] B. Turmetov, V. Karachik, “On a Boundary Value Problem for the Biharmonic Equation with Multiple Involution”, Mathematics, 9:17 (2021), 2020 | DOI | MR

[15] B. Turmetov, V. Karachik, “Construction of Eigenfunctions to One Nonlocal Second-Order Differential Operator with Double Involution”, Axioms, 11:10 (2022), 543 | DOI

[16] B. Turmetov, V. Karachik, “On Eigenfunctions and Eigenvalues of a Nonlocal Laplace Operator with Multiple Involution”, Symmetry, 13:10 (2021), 1781 | DOI

[17] V.V. Karachik, “On Green's Function of the Dirichlet Problem for the Polyharmonic Equation in the Ball”, Axioms, 12:6 (2023), 543 | DOI | MR

[18] Karachik V. V., “Sufficient Conditions for Solvability of One Class of Neumann-Type Problems for the Polyharmonic Equation”, Computational Mathematics and Mathematical Physics, 61:8 (2021), 1276–1288 | DOI | DOI | MR | Zbl

[19] V. V. Karachik, “On Solvability Conditions for the Neumann Problem for a Polyharmonic Equation in the Unit Ball”, Journal of Applied and Industrial Mathematics, 8:1 (2014), 63–75 | DOI | MR | Zbl

[20] V. V. Karachik, “Presentation of Solution of the Dirichlet Problem for Biharmonic Equation in the Unit Ball through the Green Function”, Chelyab. Fiz. Mat. Zh., 5:4-1 (2020), 391–399 (in Russ.) | DOI | Zbl