@article{VYURM_2024_16_3_a0,
author = {N. S. Astapov and N. K. Noland},
title = {Cubic equations, {Newton} quadrilaterals, and geometric constructions},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {5--11},
year = {2024},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a0/}
}
TY - JOUR AU - N. S. Astapov AU - N. K. Noland TI - Cubic equations, Newton quadrilaterals, and geometric constructions JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2024 SP - 5 EP - 11 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a0/ LA - ru ID - VYURM_2024_16_3_a0 ER -
%0 Journal Article %A N. S. Astapov %A N. K. Noland %T Cubic equations, Newton quadrilaterals, and geometric constructions %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2024 %P 5-11 %V 16 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a0/ %G ru %F VYURM_2024_16_3_a0
N. S. Astapov; N. K. Noland. Cubic equations, Newton quadrilaterals, and geometric constructions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 3, pp. 5-11. http://geodesic.mathdoc.fr/item/VYURM_2024_16_3_a0/
[1] R. Courant, H. Robbins, What is Mathematics? : An Elementary Approach to Ideas and Methods, Oxford University Press, London, 1961, 521 pp. | MR
[2] I. Newton, Arithmetica Universalis, Sive de Compositione et Resolutione Arithmetica Liber, Joh. et Herm. verbeek, Lugduni Batavorum [Leyden], 1732, 344 pp. | MR
[3] M. Hajja, J. Sondow, “Newton Quadrilaterals, the Associated Cubic Equations, and Their Rational Solutions”, The American Mathematical Monthly, 126:2 (2019), 135–150 | DOI | MR | Zbl
[4] V. B. Drozdov, “Do Bisectors Define a Triangle?”, Matematika v shkole, 2009, no. 6, 59–62 (in Russ.)
[5] N. S. Astapov, “On the Solution of Algebraic Equations of Small Degrees by Square Radicals”, Bulletin of the South Ural State University. Series “Mathematics. Mechanics. Physics”, 14:3 (2022), 5–16 | DOI | Zbl
[6] Yu. V. Trubnikov, M. M. Chernyavsky, “Localization and Finding Solutions of Trinomial Algebraic Equations”, Mathematical Structures and Modeling, 2020, no. 2 (54), 65–85 (in Russ.) | DOI