Magnetic and structural properties of all-$d$ metal Mn-Ni-Ti Heusler alloys
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 2, pp. 78-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents a theoretical study of the effect of different atomic and magnetic orderings on the structural and magnetic properties of Mn$_2$Ni$_{1+x}$Ti$_{1-x}$ alloys, which are composed entirely of transition metals. Using the density functional theory, we predict the structural ground states and magnetic reference states of compounds with $x = 0, 0,25$, $0,5$ and $0,75$ in both cubic austenite and tetragonal martensite phases. Partial substitution of Ti atoms with Ni leads to an increase in the energy barrier between structural phases, to a change from a layered atomic ordering to an alternating staggered order, and to a change from antiferromagnetic to ferromagnetic spin alignment in the cubic phase. All compounds with tetragonally distorted structures reveal the out-of-plane spin configuration and easy axis magnetocrystalline anisotropy except tetragonal L1$_0$ phase of Mn$_2$NiTi. For the latter structure, easy-plane magnetic anisotropy is observed. The calculated values of anisotropy are comparable with those of tetragonal L1$_0$-FeNi.
Keywords: all-$d$ metal Heusler alloys, magnetocrystalline anisotropy.
Mots-clés : ab initio calculations, atomic arrangement
@article{VYURM_2024_16_2_a7,
     author = {V. V. Sokolovskiy and V. D. Buchelnikov and D. Cong},
     title = {Magnetic and structural properties of all-$d$ metal {Mn-Ni-Ti} {Heusler} alloys},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {78--85},
     year = {2024},
     volume = {16},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_2_a7/}
}
TY  - JOUR
AU  - V. V. Sokolovskiy
AU  - V. D. Buchelnikov
AU  - D. Cong
TI  - Magnetic and structural properties of all-$d$ metal Mn-Ni-Ti Heusler alloys
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2024
SP  - 78
EP  - 85
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2024_16_2_a7/
LA  - en
ID  - VYURM_2024_16_2_a7
ER  - 
%0 Journal Article
%A V. V. Sokolovskiy
%A V. D. Buchelnikov
%A D. Cong
%T Magnetic and structural properties of all-$d$ metal Mn-Ni-Ti Heusler alloys
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2024
%P 78-85
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2024_16_2_a7/
%G en
%F VYURM_2024_16_2_a7
V. V. Sokolovskiy; V. D. Buchelnikov; D. Cong. Magnetic and structural properties of all-$d$ metal Mn-Ni-Ti Heusler alloys. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 2, pp. 78-85. http://geodesic.mathdoc.fr/item/VYURM_2024_16_2_a7/

[1] Krenke T., Duman E., Acet M., Wassermann E. F., Moya X., Mañosa L., Planes A., “Inverse Magnetocaloric Effect in Ferromagnetic Ni-Mn-Sn Alloys”, Nat. Mater., 4 (2005), 450–454 | DOI

[2] Kainuma R., Imano Y., Ito W., Sutou Y., Morito H., Okamoto S., Kitakami O., Oikawa K., Fujita A., Kanomata T., Ishida K., “Magnetic-Field-Induced Shape Recovery by Reverse Phase Transformation”, Nature, 439 (2006), 957–960 | DOI

[3] Entel P., Buchelnikov V.D., Gruner M.E., Hucht A., Khovailo V.V., Nayak S.K., Zayak A.T., “Shape Memory Alloys: A Summary of Recent Achievements”, Mater. Sci. Forum, 583 (2008), 21–41 | DOI

[4] Buchelnikov V.D., Vasiliev A.N., Koledov V.V., Taskaev S.V., Khovaylo V.V., Shavrov V.G., “Magnetic Shape-Memory Alloys: Phase Transitions and Functional Properties”, Phys.-Uspekhi, 49 (2006), 871 | DOI | DOI

[5] Graf T., Felser C., Parkin S.S.P., Prog. Solid State Chem., 39:1 (2011), 1–50 | DOI

[6] Tavares S., Yang K., Meyers M.A., “Heusler alloys: Past, Properties, New Alloys, and Prospects”, Prog. Mater. Sci., 132 (2022), 101017 | DOI

[7] de Paula V.G., Reis M.S., “All-d-Metal Full Heusler Alloys: A Novel Class of Functional Materials”, Chem. Mater., 33 (2021), 5483–5495 | DOI

[8] Bachagha T., Suñol J.J., “All-d-Metal Heusler Alloys: A Review”, Metals, 13:1 (2023), 111 | DOI

[9] Ahn K., “Ni-Mn Based Conventional Full Heusler Alloys, All-d-Metal Full Heusler Alloys, and Their Promising Functional Properties to Solid State Cooling by Magnetocaloric Effect”, J. Alloys. Compd., 978 (2024), 173378 | DOI

[10] Wei Z.Y., Liu E.K., Li Y., Han X.L., Du Z.W., Luo H.Z., Liu G.D., Xi X.K., Zhang H.W., Wang W.H., Wu G.H., “Magnetostructural Martensitic Transformations with Large Volume Changes and Magnetostrains in All-d-Metal Heusler Alloys”, Appl. Phys. Lett., 109 (2016), 071904 | DOI

[11] Wei Z.Y., Sun W., Shen Q., Shen Y., Zhang Y. F., Liu E. K., Liu J., “Elastocaloric Effect of All-d-Metal Heusler NiMnTi(Co) Magnetic Shape Memory Alloys by Digital Image Correlation and Infrared Thermography”, Appl. Phys. Lett., 114:10 (2019), 101903 | DOI

[12] Yan H.L., Wang L.D., Liu H.X., Huang X.M., Jia N., Li Z.B., Yang B., Zhang Y.D., Esling C., Zhao X., Zuo L., “Giant Elastocaloric Effect and Exceptional Mechanical Properties in an All-d-Metal Ni-Mn-Ti alloy: Experimental and Ab-Initio Studies”, Mater. Des., 184 (2019), 108180 | DOI

[13] Kresse G., Furthmuller J., “Efficient Iterative Schemes for Ab Initio Total-Energy Calculations using a Plane-Wave Basis Set”, Phys. Rev. B, 54:14 (1996), 11169 | DOI

[14] Kresse G., Joubert D., “From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method”, Phys. Rev. B, 59:3 (1999), 1758 | DOI

[15] Perdew J.P., Burke K., Ernzerhof M., “Generalized Gradient Approximation Made Simple”, Phys. Rev. B, 77:18 (1996), 3865 | DOI

[16] Neibecker P., Gruner M. E., Xu X., Kainuma R., Petry W., Pentcheva R., Leitner M., “Ordering Tendencies and Electronic Properties in Quaternary Heusler Derivatives”, Phys. Rev. B, 96:16 (2017), 165131 | DOI

[17] Sokolovskiy V., Miroshkina O. N., Buchelnikov V. D., Gruner M.E., “Impact of Local Arrangement of Fe and Ni on the Phase Stability and Magnetocrystalline Anisotropy in Fe-Ni-Al Heusler Alloys”, Phys. Rev. Mater., 6:2 (2022), 025402 | DOI | MR

[18] Miroshkina O.N., Sokolovskiy V.V., Buchelnikov V. D., Gruner M.E., “Electronic and Vibrational Properties of Fe2NiAl and Co2NiAl full Heusler Alloys: A First-Principles Comparison”, IEEE Trans. Magn., 58:8 (2022), 2700105 | DOI

[19] Sokolovskiy V., Miroshkina O.N., Sanosyan A., Baigutlin D., Buchelnikov V., Gruner M.E., “Magnetic and Structural Properties of Co-Ni-Z (Z = Al, Ga, In, Sn) Heusler alloys: Effect of structural Motives and Chemical Disorder”, J. Magn. Magn. Mater., 546 (2022), 168728 | DOI

[20] Kren E., Nagy E., Pal L., Szabo P., “Structures and Phase Transformations in the Mn-Ni System Near Equiatomic Concentration”, J. Phys. Chem. Sol., 29:1 (1968), 101-108 | DOI

[21] Edstrom A., Chico J., Jakobsson A., Bergman A., Rusz J., “Electronic Structure and Magnetic Properties of L10 Binary Alloys”, Phys. Rev. B, 90:1 (2014), 014402 | DOI

[22] Werwinski M., Marciniak W., “Ab Initio Study of Magnetocrystalline Anisotropy, Magnetostriction, and Fermi Surface of L10 FeNi (Tetrataenite)”, J. Phys. D, 50:49 (2017), 495008 | DOI

[23] Wu R., Freeman A., “Spin-orbit Induced Magnetic Phenomena in Bulk Metals and their Surfaces and Interfaces”, J. Magn. Magn. Mater., 200:1-3 (1999), 498 | DOI

[24] Miura Y., Ozaki S., Kuwahara Y., Tsujikawa M., Abe K., Shirai M., “The Origin of Perpendicular Magneto-Crystalline Anisotropy in L10-FeNi under Tetragonal Distortion”, J. Phys. Condens. Matter., 25 (2013), 106005 | DOI