@article{VYURM_2024_16_2_a5,
author = {E. V. Tabarintseva},
title = {Solving an ill-posed problem for a nonlinear differential equation by means of the projection regularization method},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {59--71},
year = {2024},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_2_a5/}
}
TY - JOUR AU - E. V. Tabarintseva TI - Solving an ill-posed problem for a nonlinear differential equation by means of the projection regularization method JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2024 SP - 59 EP - 71 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2024_16_2_a5/ LA - ru ID - VYURM_2024_16_2_a5 ER -
%0 Journal Article %A E. V. Tabarintseva %T Solving an ill-posed problem for a nonlinear differential equation by means of the projection regularization method %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2024 %P 59-71 %V 16 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2024_16_2_a5/ %G ru %F VYURM_2024_16_2_a5
E. V. Tabarintseva. Solving an ill-posed problem for a nonlinear differential equation by means of the projection regularization method. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 2, pp. 59-71. http://geodesic.mathdoc.fr/item/VYURM_2024_16_2_a5/
[1] Samarskii A.A., “Some Problems of the Theory of Differential Equations”, Differ. Uravn., 16:11 (1980), 1925–1935 (in Russ.) | MR
[2] Murave? L.A., Filinovskii A.V., “On a Problem with Nonlocal Boundary Condition for a Parabolic Equation”, Mathematics of the USSR-Sbornik, 74:1 (1993), 219–249 | DOI | MR | Zbl | Zbl
[3] Muravei L.A., Filinovskii A.V., “On the Non-Local Boundary-Value Problem for a Parabolic Equation”, Mathematical Notes, 54:4 (1993), 1045–1057 | DOI | MR | Zbl
[4] Ionkin N.I., “The Solution of a Certain Boundary Value Problem of the Theory of Heat Conduction with a Nonclassical Boundary Condition”, Differ. Uravn., 13:2 (1977), 294–304 (in Russ.) | MR | Zbl
[5] Ionkin N.I., “The Stability of a Problem in the Theory of Heat Conduction with Nonclassical Boundary Conditions”, Differ. Uravn., 15:7 (1979), 1279–1283 (in Russ.) | MR | Zbl
[6] Egorov I.E., Pyatkov S.G., Popov S.V., Non-classical Operator-Differential Equations, Nauka Publ, Novosibirsk, 2000, 335 pp. (in Russ.)
[7] Pyatkov S.G., Abasheeva N.L., “Solvability of Boundary Value Problems for Operator-Differential Equations of Mixed Type”, Siberian Mathematical Journal, 41:6 (2000), 1174–1187 | DOI | MR | Zbl
[8] Kozhanov A.I., “Nonlocal Problems with Generalized Samarskii-Ionkin Condition for Some Classes of Nonstationary Differential Equations”, Doklady Mathematics, 107:1 (2023), 40–43 | DOI | DOI | MR | Zbl
[9] Kozhanov A.I., Abdrakhmanov A.M., “Spatially-Nonlocal Boundary Value Problems with the generalized Samarskii-Ionkin condition for quasi-parabolic equations”, Siberian Electronic Mathematical Reports, 20:1 (2023), 110–123 | DOI | MR
[10] Pul'kina L.S., “A Nonlocal Problem with Integral Conditions for the Quasilinear Hyperbolic Equation”, Mathematical Notes, 70:1 (2001), 79–85 | DOI | DOI | MR | MR | Zbl
[11] Tagiyev R.K., Maharramli Sh.I., “Variational Statement of a Coefficient Inverse Problem for a Multidimensional Parabolic Equation”, Geometry, Mechanics, and Differential Equations, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 212, VINITI, M., 2022, 92–99 | DOI
[12] Tagiev R.K., Maharramli Sh.I., “Variational Formulation of an Inverse Problem for a Parabolic Equation with Integral Conditions”, Bulletin of the South Ural State University. Series “Mathematics. Mechanics. Physics”, 12:3 (2020), 34–40 | DOI | Zbl
[13] Ivanchov N.I., “Boundary Value Problems for a Parabolic Equation with Integral Conditions”, Differential Equations, 40:4 (2004), 591–609 | DOI | MR | Zbl
[14] Kamynin V.L., “On the Inverse Problem of Determining the Right-Hand Side of a Parabolic Equation under an Integral Overdetermination Condition”, Mathematical Notes, 77:4 (2005), 482–493 | DOI | DOI | MR | Zbl
[15] Danilkina O.Yu., “On One Nonlocal Problem for the Heat Equation with an Integral Condition”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2007, no. 1(14), 5–9 | DOI | Zbl
[16] Yuldashev T.K., Suyunova N.A., “A Non-Local Boundary Value Problem for a High-Order Nonlinear Pseudoparabolic Equation”, Journal of Mathematics and Informatics, 3: 2 (2023), 69–78
[17] Ivanov V.K., Vasin V.V., Tanana V.P., The Theory of Linear Ill-Posed Problems and its Applications, Nauka Publ, M., 1978, 206 pp. (in Russ.)
[18] Vasin V.V., Ageev A.L., Incorrect Tasks with A Priori Information, Nauka Publ, Ekaterinburg, 1993, 261 pp. (in Russ.) | MR
[19] Tabarintseva E.V., “Estimating the Accuracy of a Method of Auxiliary Boundary Conditions in Solving an Inverse Boundary Value Problem for a Nonlinear Equation”, Numerical Analysis and Applications, 11:3 (2018), 236–255 | DOI | MR | Zbl
[20] Tabarintseva E.V., “An Approach to Solving an Ill-Posed Problem for a Nonlinear Differential Equation”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 1, 2015, 231–237 (in Russ.) | MR
[21] Ismati (Ismatov) M., “On Some Nonself-Adjoint Mixed Problems in Heat Theory”, Differential Equations, 41:3 (2005), 401–415 | DOI | MR | Zbl