Mots-clés : classes of primitive from Lebesgue functions
@article{VYURM_2024_16_2_a0,
author = {V. L. Dil'man},
title = {Functional equations as mathematical models of cyclic shift coupling problems on complex curves},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {5--11},
year = {2024},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_2_a0/}
}
TY - JOUR AU - V. L. Dil'man TI - Functional equations as mathematical models of cyclic shift coupling problems on complex curves JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2024 SP - 5 EP - 11 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2024_16_2_a0/ LA - ru ID - VYURM_2024_16_2_a0 ER -
%0 Journal Article %A V. L. Dil'man %T Functional equations as mathematical models of cyclic shift coupling problems on complex curves %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2024 %P 5-11 %V 16 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2024_16_2_a0/ %G ru %F VYURM_2024_16_2_a0
V. L. Dil'man. Functional equations as mathematical models of cyclic shift coupling problems on complex curves. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 2, pp. 5-11. http://geodesic.mathdoc.fr/item/VYURM_2024_16_2_a0/
[1] Dil'man V.L., Chibrikova L.I., “Solutions of an Integral Equation with Generalized Logarithmic Kernel in $L_p$, $p > 1$”, Soviet Mathematics (Izvestiya VUZ. Matematika), 30:4 (1986), 33–46 | MR | Zbl | Zbl
[2] G.S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, Springer, Dordrecht, 2012, 378 pp. | DOI | MR
[3] V.G. Kravchenko, G.S. Litvinchuk, Introduction to the Theory of Singular Integral Operators with Shift, Springer, Dordrecht, 2012, 288 pp. | DOI | MR
[4] Karlovich Yu.I., Kravchenko V.G., Litvinchuk G.S., “Noether's theory of singular integral operators with shift”, Soviet Mathematics, 27:4 (1983), 1–34 | MR | Zbl | Zbl
[5] Dil'man V.L., Komissarova D.A., “Linear Functional Equations in the Class of Antiderivatives from the Lebesgue Functions on Curves Segments”, Chelyabinsk Physical and Mathematical Journal, 8:1 (2023), 5–17 (in Russ.) | DOI | MR | Zbl
[6] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, Birkhauser, Basel, 2009, 585 pp. | DOI | MR
[7] Kravchenko V.G., “On a Functional Equation with a Shift in the Space of Continuous Functions”, Mathematical Notes, 22:2 (1977), 660–665 | DOI | MR | Zbl
[8] Pelyuh G.P., Sharkovskiy A.N., Method of Invariants in the Functional Equations Theory, Inst. of Math. NAS, Kiyev, 2013 (in Russ.)
[9] Brodskiy Ya.S., Slipenko A.K., Functional Equations, Visha shkola, Kiyev, 1983, 86 pp. (in Russ.)
[10] Antonevich A.B., Linear functional equations: an operator approach, Izd-vo “Universitetskoye” Publ, Minsk, 1988, 231 pp. (in Russ.) | MR
[11] Ilolov M., Avezov R., “On a Class of Linear Functional Equations with Constant Coefficients”, News of the National Academy of Sciences of Tajikistan. Department of physical, mathematical, chemical, geological and technical sciences, 2019, no. 4( 177), 7–12 (in Russ.)
[12] Likhtarnikov L.M., An Elementary Introduction to Functional Equations, Lan' Publ, St. Petersburg, 1997, 156 pp. (in Russ.)
[13] Cherniavsky V.P., “Unambiguity of Decisions when Using Linear Functional Equation in the Radiation Protection Model”, Global Nuclear Safety, 2019, no. 4(33), 18–26 (in Russ.)
[14] Mushelishvili N.I., Singular integral equations, Nauka Publ, M., 1968, 511 pp. (in Russ.) | MR