Functional equations as mathematical models of cyclic shift coupling problems on complex curves
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 2, pp. 5-11
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers linear functional equations with a shift function having a nonzero derivative satisfying the Helder condition on an arbitrary piecewise smooth curve. Such equations are studied in connection with the theory of boundary value problems for analytical functions, which are a mathematical tool in the study of mathematical models of elasticity theory in which the conjugation conditions contain a boundary shift. The shift function acts cyclically on a set of simple curves forming a given curve, and except the ends of simple curves, there are no periodic points relative to the shift function. The purpose of the study is to find conditions for the existence and uniqueness of a solution (and in the case of non–uniqueness of the cardinality of the set of solutions) of such equations in the classes of Helder and primitive Lebesgue functions with a coefficient and the right part of the same classes.
Keywords: linear functional equations of one variable, Helder classes of functions, piecewise smooth curves.
Mots-clés : classes of primitive from Lebesgue functions
@article{VYURM_2024_16_2_a0,
     author = {V. L. Dil'man},
     title = {Functional equations as mathematical models of cyclic shift coupling problems on complex curves},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {5--11},
     year = {2024},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_2_a0/}
}
TY  - JOUR
AU  - V. L. Dil'man
TI  - Functional equations as mathematical models of cyclic shift coupling problems on complex curves
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2024
SP  - 5
EP  - 11
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2024_16_2_a0/
LA  - ru
ID  - VYURM_2024_16_2_a0
ER  - 
%0 Journal Article
%A V. L. Dil'man
%T Functional equations as mathematical models of cyclic shift coupling problems on complex curves
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2024
%P 5-11
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2024_16_2_a0/
%G ru
%F VYURM_2024_16_2_a0
V. L. Dil'man. Functional equations as mathematical models of cyclic shift coupling problems on complex curves. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 2, pp. 5-11. http://geodesic.mathdoc.fr/item/VYURM_2024_16_2_a0/

[1] Dil'man V.L., Chibrikova L.I., “Solutions of an Integral Equation with Generalized Logarithmic Kernel in $L_p$, $p > 1$”, Soviet Mathematics (Izvestiya VUZ. Matematika), 30:4 (1986), 33–46 | MR | Zbl | Zbl

[2] G.S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, Springer, Dordrecht, 2012, 378 pp. | DOI | MR

[3] V.G. Kravchenko, G.S. Litvinchuk, Introduction to the Theory of Singular Integral Operators with Shift, Springer, Dordrecht, 2012, 288 pp. | DOI | MR

[4] Karlovich Yu.I., Kravchenko V.G., Litvinchuk G.S., “Noether's theory of singular integral operators with shift”, Soviet Mathematics, 27:4 (1983), 1–34 | MR | Zbl | Zbl

[5] Dil'man V.L., Komissarova D.A., “Linear Functional Equations in the Class of Antiderivatives from the Lebesgue Functions on Curves Segments”, Chelyabinsk Physical and Mathematical Journal, 8:1 (2023), 5–17 (in Russ.) | DOI | MR | Zbl

[6] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, Birkhauser, Basel, 2009, 585 pp. | DOI | MR

[7] Kravchenko V.G., “On a Functional Equation with a Shift in the Space of Continuous Functions”, Mathematical Notes, 22:2 (1977), 660–665 | DOI | MR | Zbl

[8] Pelyuh G.P., Sharkovskiy A.N., Method of Invariants in the Functional Equations Theory, Inst. of Math. NAS, Kiyev, 2013 (in Russ.)

[9] Brodskiy Ya.S., Slipenko A.K., Functional Equations, Visha shkola, Kiyev, 1983, 86 pp. (in Russ.)

[10] Antonevich A.B., Linear functional equations: an operator approach, Izd-vo “Universitetskoye” Publ, Minsk, 1988, 231 pp. (in Russ.) | MR

[11] Ilolov M., Avezov R., “On a Class of Linear Functional Equations with Constant Coefficients”, News of the National Academy of Sciences of Tajikistan. Department of physical, mathematical, chemical, geological and technical sciences, 2019, no. 4( 177), 7–12 (in Russ.)

[12] Likhtarnikov L.M., An Elementary Introduction to Functional Equations, Lan' Publ, St. Petersburg, 1997, 156 pp. (in Russ.)

[13] Cherniavsky V.P., “Unambiguity of Decisions when Using Linear Functional Equation in the Radiation Protection Model”, Global Nuclear Safety, 2019, no. 4(33), 18–26 (in Russ.)

[14] Mushelishvili N.I., Singular integral equations, Nauka Publ, M., 1968, 511 pp. (in Russ.) | MR