Bifurcations of a fused triple cycle of a piecewise-smooth continuous dynamical system
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 1, pp. 39-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The study of bifurcations of dynamic systems defined by piecewise-smooth continuous vector fields is interesting from a theoretical and practical point of view. Nonlocal bifurcations in generic one-parameter families of such systems on a plane have already been described. In this paper, we consider a generic two-parameter family of piecewise-smooth continuous planar vector fields. At zero values of the parameters, it is assumed that the vector field has a smooth stable closed trajectory $\Gamma$, which has a simple tangency with the field switching line. A bifurcation diagram of a family is obtained – a partition of the neighborhood of zero on the parameter plane into sets, for whose elements the corresponding vector fields of the family have the same number and type of closed trajectories in some fixed neighborhood of $\Gamma$. In particular, we show that the maximum number of closed trajectories born from $\Gamma$ when the parameters change is three.
Keywords: piecewise-smooth continuous vector field, dynamical system, closed trajectory, bifurcation diagram.
@article{VYURM_2024_16_1_a4,
     author = {V. Sh. Roitenberg},
     title = {Bifurcations of a fused triple cycle of a piecewise-smooth continuous dynamical system},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {39--48},
     year = {2024},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_1_a4/}
}
TY  - JOUR
AU  - V. Sh. Roitenberg
TI  - Bifurcations of a fused triple cycle of a piecewise-smooth continuous dynamical system
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2024
SP  - 39
EP  - 48
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2024_16_1_a4/
LA  - ru
ID  - VYURM_2024_16_1_a4
ER  - 
%0 Journal Article
%A V. Sh. Roitenberg
%T Bifurcations of a fused triple cycle of a piecewise-smooth continuous dynamical system
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2024
%P 39-48
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2024_16_1_a4/
%G ru
%F VYURM_2024_16_1_a4
V. Sh. Roitenberg. Bifurcations of a fused triple cycle of a piecewise-smooth continuous dynamical system. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 1, pp. 39-48. http://geodesic.mathdoc.fr/item/VYURM_2024_16_1_a4/

[1] Filippov A.F., Differential Equations with Discontinuous Right-Hand Side, Nauka Publ, M., 1985, 224 pp. (in Russ.)

[2] M. di Bernardo, Ch.J. Budd, A. R. Capneys, P. Kowalczyk, Piecewise-smooth Dynamical Systems, Applied Mathematical Sciences, Springer, London, 2008, 483 pp. | DOI

[3] Bautin N.N., Leontovich E.A., Methods and Techniques for a Qualitative Study of Dynamical Systems on a Plane, Nauka, M., 1976, 496 pp. (in Russ.)

[4] D.J.W. Simpson, Bifurcations in Piecewise-Smooth Continuous Dynamical Systems, World Scientific Series on Nonlinear Science, Series A, 69, World Scientific, New-Jersey, 2010, 238 pp. | DOI

[5] Roitenberg V.Sh., “On Structurally Stable Continuous Piecewise-Smooth Dynamical Systems on the Plane”, The Bulletin of the Adyghe State University. Ser.: Natural-Mathematical and Technical Sciences, 2021, no. 4, 24–29 (in Russ.) | DOI

[6] Roitenberg V.Sh., “On Generation of a Limit Cycle from a Separatrix Loop of a Sewn Saddle-Node”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 22:2 (2022), 159–168 (in Russ.) | DOI

[7] Fikhtengol'ts G.M., Differential and Integral Calculus Course, v. 1, Fizmatgiz Publ, M., 1962, 607 pp. (in Russ.)

[8] Roitenberg V.Sh., “On Bifurcations of a Sewing Triple Cycle”, inter-higher school coll. of Sci. Papers, Mathematics and mathematical education. Theory and practice, 9, YaSTU Publ., Yaroslavl, 2014, 54–67 (in Russ.) https://www.ystu.ru/information/university/nauka/

[9] Andronov A.A., Leontovich E.A., Gordon I.I., Maier A.G., Qualitative Theory of Second-Order Dynamic Systems, J. Wiley, New York, Jerusalem, 1973, 524 pp.