Mots-clés : constituent unit
@article{VYURM_2024_16_1_a2,
author = {E. V. Larkin and E. S. Soldatov and A. V. Bogomolov},
title = {Mathematical support for monitoring the status and control of operating modes of cryogenic storage systems},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {23--31},
year = {2024},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_1_a2/}
}
TY - JOUR AU - E. V. Larkin AU - E. S. Soldatov AU - A. V. Bogomolov TI - Mathematical support for monitoring the status and control of operating modes of cryogenic storage systems JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2024 SP - 23 EP - 31 VL - 16 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2024_16_1_a2/ LA - ru ID - VYURM_2024_16_1_a2 ER -
%0 Journal Article %A E. V. Larkin %A E. S. Soldatov %A A. V. Bogomolov %T Mathematical support for monitoring the status and control of operating modes of cryogenic storage systems %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2024 %P 23-31 %V 16 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2024_16_1_a2/ %G ru %F VYURM_2024_16_1_a2
E. V. Larkin; E. S. Soldatov; A. V. Bogomolov. Mathematical support for monitoring the status and control of operating modes of cryogenic storage systems. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 1, pp. 23-31. http://geodesic.mathdoc.fr/item/VYURM_2024_16_1_a2/
[1] Ismagilova V.S., Chekushina T.V., “Transportation of Pipeline and Liquefied Natural Gas: Comparative Analysis of Pros and Cons”, Earth Sciences and Subsoil Use, 46:1 (82) (2023), 61–71 | DOI
[2] Soldatov E.S., “Modeling Software and Monitoring of Processes in Reservoirs and Tanks for Long Storage of Cryogenic Products”, News of Tula State University. Technical Science, 2019, no. 10, 385–393 (in Russ.)
[3] E. Larkin, A. Bogomolov, A. Privalov, “Discrete Model of Mobile Robot Assemble Fault-Tolerance”, Lecture Notes in Computer Science, 11659, Springer, Cham, 2019, 204–215 | DOI
[4] Makarenko V.G., Podorozhnjyak A.A., Rudakov S.V., Bogomolov A.V., “An Inertial-Satellite Navigation Control System for Vehicles”, Probl. Upr., 2007, no. 1, 64–71 (in Russ.)
[5] Arkharov I.A., “On the Need for the Revival of Cryogenic Engineering in Russia”, Bulletin of the International Academy of Refrigeration, 2023, no. 1, 6–9 (in Russ.)
[6] E. Soldatov, A. Bogomolov, “Issues of Energy-Efficient Storage of Fuel in Multimodal Transport Units”, Smart Innovation, Systems and Technologies, 232 (2022), 393–402 | DOI
[7] Epikhin A.I., Fadeev M.I., Vasagan I.Yu., “Monitoring and Forecasting of Fuel Consumption by Vessels using Neural Networks”, Operation of maritime transport, 2023, no. 2(107), 104–107 | DOI
[8] Golosovsky M.S., Bogomolov A.V., Tobin D.S., “Algorithm for Setting up Fuzzy Logical Inference Systems based on Statistical Data”, Scientific and Technical Information. Series 2: Information Processes and Systems, 2023, no. 1, 1–9 | DOI
[9] G. Nowak, A. Rusin, “Using the Artificial Neural Network to Control the Steam Turbine Heating Process”, Applied Thermal Engineering, 108 (2016), 204–210 | DOI
[10] E. Larkin, A. Bogomolov, T. Akimenko, A. Privalov, “Digital Control of Continuous Production with Dry Friction at Actuators”, Smart Innovation, Systems and Technologies, 232 (2022), 427–436 | DOI
[11] S.W. Chen, T. Wang, N. Atanasov et al., “Large Scale Model Predictive Control with Neural Networks and Primal Active Sets”, Automatica, 135 (2022), 109947 | DOI
[12] Makarenko V.G., Bogomolov A.V., Rudakov S.V., Podorozhnyak A.A., “Technique of Construction of an Inertia-Satellite Navigational Control System of Vehicles with Neuron Network by Optimization of a Structure of Vector of Gaugings”, Mechatronics, automation, control, 2007, no. 1, 39–44 (in Russ.)
[13] R.S. Sutton, A.G. Barto, Reinforcement Learning, second edition: An Introduction, MIT Press, 2018, 552 pp.
[14] J. Krenek, K. Kuca, P. Blazek, O. Krejcar, D. Jun, “Application of Artificial Neural Networks in Condition Based Predictive Maintenance”, Recent Developments in Intelligent Information and Database Systems, Studies in Computational Intelligence book series, 642, 2016, 75–86 | DOI