Methods of searching for the Kemeny median for non-strict and partial orderings of alternatives
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 1, pp. 13-22

Voir la notice de l'article provenant de la source Math-Net.Ru

This article describes an approximate algorithm for finding the Kemeny median for a set of non-strict orderings of alternatives. The study was carried out for choosing alternatives involving making an informed decision on the completion of the analysis and generalization of incoming information and reaching a threshold value for the decision criterion. The article offers a justification for choosing solutions to multi-criteria tasks in planning and management from an existing set of alternatives using expert assessments. Two algorithms for searching for the Kemeny median are proposed in the presence of non-strict and partial orderings in the initial profile and in the presence of alternatives that have not been evaluated by experts. The article discusses constructing the Kemeny median according to the algorithm using a numerical example. The article shows the validity of using the approximate algorithm to solve the express algorithm in comparison with the traditional exact algorithm. It is separately noted that in the case of several solutions, the algorithm guarantees finding an option that is close enough to an expert ordering of the expert assessment profile under consideration.
Mots-clés : alternatives
Keywords: ranking, Condorcet principle, Board procedure, Kemeny median, algorithm, experts.
@article{VYURM_2024_16_1_a1,
     author = {A. V. Kalach and Yu. V. Bugaev and B. E. Nikitin},
     title = {Methods of searching for the {Kemeny} median for non-strict and partial orderings of alternatives},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {13--22},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_1_a1/}
}
TY  - JOUR
AU  - A. V. Kalach
AU  - Yu. V. Bugaev
AU  - B. E. Nikitin
TI  - Methods of searching for the Kemeny median for non-strict and partial orderings of alternatives
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2024
SP  - 13
EP  - 22
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURM_2024_16_1_a1/
LA  - ru
ID  - VYURM_2024_16_1_a1
ER  - 
%0 Journal Article
%A A. V. Kalach
%A Yu. V. Bugaev
%A B. E. Nikitin
%T Methods of searching for the Kemeny median for non-strict and partial orderings of alternatives
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2024
%P 13-22
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURM_2024_16_1_a1/
%G ru
%F VYURM_2024_16_1_a1
A. V. Kalach; Yu. V. Bugaev; B. E. Nikitin. Methods of searching for the Kemeny median for non-strict and partial orderings of alternatives. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 1, pp. 13-22. http://geodesic.mathdoc.fr/item/VYURM_2024_16_1_a1/