Mots-clés : Poisson potential
@article{VYURM_2024_16_1_a0,
author = {A. Yu. Egorova},
title = {The {Cauchy} problem for inhomogeneous parabolic systems in anisotropic {Zygmund} spaces},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {5--12},
year = {2024},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_1_a0/}
}
TY - JOUR AU - A. Yu. Egorova TI - The Cauchy problem for inhomogeneous parabolic systems in anisotropic Zygmund spaces JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2024 SP - 5 EP - 12 VL - 16 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2024_16_1_a0/ LA - ru ID - VYURM_2024_16_1_a0 ER -
%0 Journal Article %A A. Yu. Egorova %T The Cauchy problem for inhomogeneous parabolic systems in anisotropic Zygmund spaces %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2024 %P 5-12 %V 16 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2024_16_1_a0/ %G ru %F VYURM_2024_16_1_a0
A. Yu. Egorova. The Cauchy problem for inhomogeneous parabolic systems in anisotropic Zygmund spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 1, pp. 5-12. http://geodesic.mathdoc.fr/item/VYURM_2024_16_1_a0/
[1] Tychonoff A., “Theoremes d'unicite pour l'equation de la chaleur”, Math. col., 42:2 (1935), 199–216
[2] Ladyzhenskaya O.A., “On the Uniqueness of the Solution of Cauchy's Problem for a Linear Parabolic Equation”, Mat. Sb. (N.S.), 27(69):2 (1950), 175–184
[3] Gel'fand I.M., Shilov G.E., “On a New Method in the Uniqueness Theorems for Solving the Cauchy Problem”, DAN, 102:6 (1955), 1065–1068 (in Russ.)
[4] Zolotarev G.N., “On the Uniqueness of the Solution of the Cauchy Problem for Systems Parabolic in the Sense of I.G. Petrovsky”, Izv. vuzov. Matem., 1958, no. 2, 118–135 (in Russ.)
[5] Baderko E.A., “Poisson Potential in the First Initial Boundary Value Problem for a Parabolic System in a Semi-Bounded Domain on a Plane”, Differential Equations, 58:10 (2022), 1327–1337 | DOI
[6] Pyatkov S.G., “Cauchy Problem Solvability with the Data Specified on the Rectangle Boundary for a One-Dimensional Parabolic Equation”, Russian Journal of Cybernetics, 3:2 (2022), 40–46 | DOI
[7] Petrovskii I.G., “On the Cauchy Problem in a Domain of Non-Analytic Functions”, Uspekhi mat. nauk, 1937, no. 3, 234–238 (in Russ.)
[8] Eidelman S.D., “The Cauchy Problem for Parabolic Systems”, DAN USSR, 98:6 (1954), 913-915 (in Russ.)
[9] Baderko E.A., Sakharov S.I., “Uniqueness of Solutions of Initial-Boundary Value Problems for Parabolic Systems with Dini-Continuous Coefficients in Domains on the Plane”, Dokl. Math., 105 (2022), 71–74 | DOI
[10] Konenkov A.N., “The Cauchy Problem for the Heat Equation in Zygmund Spaces”, Differential Equations, 41:6 (2005), 860–872 | DOI
[11] Konenkov A.N., “The Cauchy Problem for Parabolic Equations in Zygmund Spaces”, Differential Equations, 42:6 (2006), 867–873 | DOI
[12] Solonnikov V.A., “On Boundary Value Problems for Linear Parabolic Systems of Differential Equations of General Form”, Trudy Matematicheskogo instituta imeni V.A. Steklova, 83, 1965, 3–163 (in Russ.)
[13] Eidelman S.D., Parabolic systems, Nauka Publ, M., 1964, 443 pp. (in Russ.)
[14] Egorova A.Yu., “The Cauchy Problem for Systems of Parabolic Equations in Anisotropic Zygmund Spaces”, Bulletin of BSU. Mathematics, computer science, 2023, no. 3, 14–22 | DOI
[15] Vladimirov V.S., Equations of Mathematical Physics, Nauka Publ, M., 1988, 512 pp. (in Russ.)