The Cauchy problem for inhomogeneous parabolic systems in anisotropic Zygmund spaces
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 1, pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article deals with the Cauchy problem for a second-order parabolic system with constant coefficients and a non-zero right hand side which satisfy the condition of uniform parabolicity in the sense of Petrovsky. The initial condition can also be non-zero. Anisotropic Zygmund spaces which are analogous to parabolic Hölder spaces in the case of an integer smoothness index are used to construct a smoothness scale for solutions to such systems. The properties of the volume potential for a parabolic system were studied using their representation through the Poisson potential. Estimates of the operator given by the Poisson potential established estimates for the volume potential in weighted parabolic Zygmund spaces. The results are used to construct a smoothness scale for a bounded solution to the Cauchy problem for a second-order parabolic system in weighted anisotropic Zygmund spaces.
Keywords: parabolic system, the Cauchy problem, volume potential, anisotropic Zygmund spaces.
Mots-clés : Poisson potential
@article{VYURM_2024_16_1_a0,
     author = {A. Yu. Egorova},
     title = {The {Cauchy} problem for inhomogeneous parabolic systems in anisotropic {Zygmund} spaces},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {5--12},
     year = {2024},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2024_16_1_a0/}
}
TY  - JOUR
AU  - A. Yu. Egorova
TI  - The Cauchy problem for inhomogeneous parabolic systems in anisotropic Zygmund spaces
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2024
SP  - 5
EP  - 12
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2024_16_1_a0/
LA  - ru
ID  - VYURM_2024_16_1_a0
ER  - 
%0 Journal Article
%A A. Yu. Egorova
%T The Cauchy problem for inhomogeneous parabolic systems in anisotropic Zygmund spaces
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2024
%P 5-12
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2024_16_1_a0/
%G ru
%F VYURM_2024_16_1_a0
A. Yu. Egorova. The Cauchy problem for inhomogeneous parabolic systems in anisotropic Zygmund spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 16 (2024) no. 1, pp. 5-12. http://geodesic.mathdoc.fr/item/VYURM_2024_16_1_a0/

[1] Tychonoff A., “Theoremes d'unicite pour l'equation de la chaleur”, Math. col., 42:2 (1935), 199–216

[2] Ladyzhenskaya O.A., “On the Uniqueness of the Solution of Cauchy's Problem for a Linear Parabolic Equation”, Mat. Sb. (N.S.), 27(69):2 (1950), 175–184

[3] Gel'fand I.M., Shilov G.E., “On a New Method in the Uniqueness Theorems for Solving the Cauchy Problem”, DAN, 102:6 (1955), 1065–1068 (in Russ.)

[4] Zolotarev G.N., “On the Uniqueness of the Solution of the Cauchy Problem for Systems Parabolic in the Sense of I.G. Petrovsky”, Izv. vuzov. Matem., 1958, no. 2, 118–135 (in Russ.)

[5] Baderko E.A., “Poisson Potential in the First Initial Boundary Value Problem for a Parabolic System in a Semi-Bounded Domain on a Plane”, Differential Equations, 58:10 (2022), 1327–1337 | DOI

[6] Pyatkov S.G., “Cauchy Problem Solvability with the Data Specified on the Rectangle Boundary for a One-Dimensional Parabolic Equation”, Russian Journal of Cybernetics, 3:2 (2022), 40–46 | DOI

[7] Petrovskii I.G., “On the Cauchy Problem in a Domain of Non-Analytic Functions”, Uspekhi mat. nauk, 1937, no. 3, 234–238 (in Russ.)

[8] Eidelman S.D., “The Cauchy Problem for Parabolic Systems”, DAN USSR, 98:6 (1954), 913-915 (in Russ.)

[9] Baderko E.A., Sakharov S.I., “Uniqueness of Solutions of Initial-Boundary Value Problems for Parabolic Systems with Dini-Continuous Coefficients in Domains on the Plane”, Dokl. Math., 105 (2022), 71–74 | DOI

[10] Konenkov A.N., “The Cauchy Problem for the Heat Equation in Zygmund Spaces”, Differential Equations, 41:6 (2005), 860–872 | DOI

[11] Konenkov A.N., “The Cauchy Problem for Parabolic Equations in Zygmund Spaces”, Differential Equations, 42:6 (2006), 867–873 | DOI

[12] Solonnikov V.A., “On Boundary Value Problems for Linear Parabolic Systems of Differential Equations of General Form”, Trudy Matematicheskogo instituta imeni V.A. Steklova, 83, 1965, 3–163 (in Russ.)

[13] Eidelman S.D., Parabolic systems, Nauka Publ, M., 1964, 443 pp. (in Russ.)

[14] Egorova A.Yu., “The Cauchy Problem for Systems of Parabolic Equations in Anisotropic Zygmund Spaces”, Bulletin of BSU. Mathematics, computer science, 2023, no. 3, 14–22 | DOI

[15] Vladimirov V.S., Equations of Mathematical Physics, Nauka Publ, M., 1988, 512 pp. (in Russ.)