The modeling of surface plasmon polaritons excitation in a rectangular gold-based nanoresonator
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 3, pp. 79-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers the modeling of surface plasmon polaritons excitation in a limited nanostructure on the basis of a two-dimensional area discrete model, the area interacts with the oscillator. The nanostructure is a rectangle defined on the metal surface at the interface of the gold–silicon oxide, the surface plasmon–polaritons are excited by an electromagnetic radiation point source located above the metal surface. The dynamics of radiation point source is described by a discrete version of the Van der Pol equation with a small nonlinearity of the source parameters. The parameters of the gold-silicon oxide structure (the wave phase speed, the radiation source frequency, the characteristic time in the system, etc.) will be received from the dispersion relation for surface plasmon–polaritons at a single metal–dielectric interface. The distributions of the wave field in the structure will be analyzed at different positions of the point oscillator and different coupling coefficients of the wave field with the oscillators. The resonant wave field mode composition at different positions of the point oscillator and different coupling coefficients will be found using the two-dimensional Fourier transform of the wave field, the time evolution of excited modes of the wave field amplitudes will be also analyzed. In conclusion, the paper gives applicability limits of the considered model for studying the surface plasmon polaritons excitation in a limited nanostructure.
Keywords: plasmonics, nanocavities.
Mots-clés : surface plasmon polaritons
@article{VYURM_2023_15_3_a8,
     author = {I. V. Bychkov and D. A. Kuzmin and M. A. Zagrebina},
     title = {The modeling of surface plasmon polaritons excitation in a rectangular gold-based nanoresonator},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {79--88},
     year = {2023},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a8/}
}
TY  - JOUR
AU  - I. V. Bychkov
AU  - D. A. Kuzmin
AU  - M. A. Zagrebina
TI  - The modeling of surface plasmon polaritons excitation in a rectangular gold-based nanoresonator
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2023
SP  - 79
EP  - 88
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a8/
LA  - ru
ID  - VYURM_2023_15_3_a8
ER  - 
%0 Journal Article
%A I. V. Bychkov
%A D. A. Kuzmin
%A M. A. Zagrebina
%T The modeling of surface plasmon polaritons excitation in a rectangular gold-based nanoresonator
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2023
%P 79-88
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a8/
%G ru
%F VYURM_2023_15_3_a8
I. V. Bychkov; D. A. Kuzmin; M. A. Zagrebina. The modeling of surface plasmon polaritons excitation in a rectangular gold-based nanoresonator. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 3, pp. 79-88. http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a8/

[1] Maier S.A., Plasmonics: theory and applications, NITs “Reguliarnaia i khaoticheskaia dinamika”, Izhevsk, 2011, 296 pp. (in Russ.)

[2] A. Sommerfeld, “Ueber die Fortpflanzung elektrodynamischer Wellen l?angs eines Drahtes”, Ann. Phys., 303 (1899), 233–290 | DOI

[3] R.W. Wood , “ On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum”, Proceedings of the Physical Society of London, 18:1 (1902), 269–275 | DOI

[4] J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie”, Ann. Phys., 328:10 (1907), 846–866 | DOI

[5] A. Sommerfeld, “Uber die Ausbreitung der Wellen in der drahtlosen Telegraphie”, Ann. Phys., 333:4 (1909), 665–736 | DOI

[6] R.H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films”, Phys. Rev., 106:5 (1957), 874–881 | DOI | MR

[7] E. Kretschmann, H. Raether, “Radiative Decay of Non Radiative Surface Plasmons Excited by Light”, Zeitschrift für Naturforschung A, 23:12 (1968), 2135–2136 | DOI

[8] Fedianin D.Iu., Amplification of Surface Plasmon Polaritons in Nanoscale Waveguides, Dis. Cand. of Physical and Mathematical Sciences, Dolgoprudnyi, 2013, 138 pp. (in Russ.) | Zbl

[9] J.T. Hugall, A. Singh, N.F. van Hulst, “Plasmonic cavity coupling”, ACS Photonics, 5:1 (2018), 43–53 | DOI

[10] Andrianov E.S., Vinogradov A.P., Dorofeenko A.V., Zyablovskiy A.A., Lisyanskiy A.A., Pukhov A.A., Quantum Nanoplasmonics, A Textbook, Izdatel'skiy dom “Intellekt”, Dolgoprudnyy, 2015, 368 pp. (in Russ.)

[11] Kornienko V.N., Privezentsev A.P., “Features of the Multimode Self-Consistent Dynamics of an Ensemble of Self-Oscillators and the Field in a Rectangular Region”, Journal of Communications Technology and Electronics, 58:7 (2013), 703–710 | DOI | DOI

[12] Kornienko V.N., Privezentsev A.P., “Excitation of Circular Membrane Waves by an Ensemble of Autogenerators”, Radiotekhnika i elektronika, 55:3 (2010), 362–368 (in Russ.)

[13] Kornienko V.N., Privezentsev A.P., “Formation of Spatiotemporal Structures in the Active Medium-Wave Field System in a Region with a Translucent Boundary”, Radiotekhnika i elektronika, 56:4 (2011), 417–422 (in Russ.)

[14] Privezentsev A.P., Oscillation Theory, a textbook, Chelyab. gos. un-t, Chelyabinsk, 2007, 111 pp. (in Russ.)