@article{VYURM_2023_15_3_a5,
author = {V. V. Chupin and D. E. Chernogubov},
title = {Studying the costcritical deformations of shutter spherical panels of constant thickness},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {55--61},
year = {2023},
volume = {15},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a5/}
}
TY - JOUR AU - V. V. Chupin AU - D. E. Chernogubov TI - Studying the costcritical deformations of shutter spherical panels of constant thickness JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2023 SP - 55 EP - 61 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a5/ LA - ru ID - VYURM_2023_15_3_a5 ER -
%0 Journal Article %A V. V. Chupin %A D. E. Chernogubov %T Studying the costcritical deformations of shutter spherical panels of constant thickness %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2023 %P 55-61 %V 15 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a5/ %G ru %F VYURM_2023_15_3_a5
V. V. Chupin; D. E. Chernogubov. Studying the costcritical deformations of shutter spherical panels of constant thickness. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 3, pp. 55-61. http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a5/
[1] Novozhilov V.V., Fundamentals of Nonlinear Elasticity, Gostehizdat Publ, M., 1948, 211 pp. (in Russ.) | MR
[2] Gavryushin S.S., Development of Methods for Calculating and Designing Elastic Shell Structures of Instrument Devices: Dissertation, dr. eng. sci., M., 1994, 316 pp. (in Russ.)
[3] Gavryushin S.S., “Numerical Modeling of the Processes of Nonlinear Deformation of Thin Elastic Shells”, Matematicheskoe modelirovanie i chislennye metody, 2014, no. 1, 115–130 (in Russ.)
[4] Grigolyuk E.I., Lopanitsyn E.A., “Influence of Axisymmetric Initial Irregularities of a Spherical Shell on its Critical Load”, Izvestiya MGTU MAMI, 2008, no. 1(5), 233–246 (in Russ.)
[5] Grigolyuk E.I., Lopanitsyn E.A., “Asymmetric Behavior of a Sloping Spherical Shell under Finite Deflections”, Doklady Physics, 48:2 (2003), 80–83 | DOI
[6] Bazhenov V.A., Solovei N.A., Krivenko O.P., Mishchenko O.A., “Modeling of Nonlinear Deformation and Buckling of Elastic Inhomogeneities Shells”, Stroitel'naya mekhanika inzhenernykh konstruktsiy i sooruzheniy, 2014, no. 5, 14–33 (in Russ.)
[7] Podkopaev S.A., Gavryushin S.S., “Methodology for Studying the Supercritical Behavior of Axisymmetric Membranes used in the Industrial Internet of Things”, Interuniversity collection of scientific papers, Mathematical modeling and experimental mechanics of deformable solids, 3, Tverskoy gosudarstvennyy tekhnicheskiy universitet Publ, Tver', 2020, 73–83 (in Russ.)
[8] Chupin V.V., Chernogubov D.E., Strong Bending and Stability of Compound Shells of Revolution under Axisymmetric Loading with Allowance for Plastic Deformations, Monograph, Dep. v VINITI RAN 10.09.2018, No102-V2018, 2018, 285 pp. (in Russ.)