Numerical and experimental study of compression after impact (CAI-test) of a fabric composite with open hole defects
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 3, pp. 43-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We examine a new approach to the computational assessment of the compressive fracture load (compression after impact, CAI) of a fabric composite with an open hole defect. The simulation takes into account the possibility of inelastic deformation of the polymer and the failure of fibers. Numerical calculations were conducted in ANSYS WB using standard material models from its library: orthotropic and isotropic elastic-plastic media. The materials used are fixed on common nodes of the finite element mesh, which ensures joint work and complex properties that are not inherent in standard material models (mFEA approach). In the experiments, STEF industrial GFRP 4 mm thick based on type E-type fibers and epoxyphenolic resin was used. Defects from a low-speed impact are replaced in the calculations by an open hole defect. The curves of nonlinear deformation and fracture obtained in the calculations are in good agreement with the experimental ones up to fracture.
Mots-clés : fabric composite, CAI-test
Keywords: modelling, nonlinearity, mFEA approach, impact defect, experiment.
@article{VYURM_2023_15_3_a4,
     author = {S. B. Sapozhnikov and O. S. Buslaeva},
     title = {Numerical and experimental study of compression after impact {(CAI-test)} of a fabric composite with open hole defects},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {43--54},
     year = {2023},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a4/}
}
TY  - JOUR
AU  - S. B. Sapozhnikov
AU  - O. S. Buslaeva
TI  - Numerical and experimental study of compression after impact (CAI-test) of a fabric composite with open hole defects
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2023
SP  - 43
EP  - 54
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a4/
LA  - ru
ID  - VYURM_2023_15_3_a4
ER  - 
%0 Journal Article
%A S. B. Sapozhnikov
%A O. S. Buslaeva
%T Numerical and experimental study of compression after impact (CAI-test) of a fabric composite with open hole defects
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2023
%P 43-54
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a4/
%G ru
%F VYURM_2023_15_3_a4
S. B. Sapozhnikov; O. S. Buslaeva. Numerical and experimental study of compression after impact (CAI-test) of a fabric composite with open hole defects. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 3, pp. 43-54. http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a4/

[1] G. Eyer, O. Montagnier, C. Hochard, J.-P. Charles, “Effect of Matrix Damage on Compressive Strength in the Fiber Direction for Laminated Composites”, Composites Part A Applied Science and Manufacturing, 94 (2017), 86–92 | DOI

[2] M.F.S.F. de Moura, J.P.M. Goncßalves, A.T. Marques, P.M.S.T. de Castro, “Prediction of Compressive Strength of Carbon-Epoxy Laminates Containing Delamination by Using a Mixed-Mode Damage Model”, Compos Struct., 50:2 (2000), 151–157 | DOI

[3] W.J. Cantwell, P.T. Curtis, J. Morton, “An Assessment of the Impact Performance of CFRP Reinforced with High-Strain Carbon Fibres”, Composites Science and Technology, 25:2 (1986), 133–148 | DOI

[4] J.C. Prichard, P.J. Hogg, “The Role of Impact Damage in Post-Impact Compression Testing”, Composites, 21:6 (1990), 503–511 | DOI

[5] T. Ishikawa, S. Sugimoto, M. Matsushima, Y. Hayashi, “Some Experimental Findings in Compression-Afterimpact (CAI) Tests of CF/PEEK (APC-2) and Conventional CF/Epoxy Flat Plates”, Compos. Sci. Technol., 55:4 (1995), 349–363 | DOI

[6] C. Soutis, P.T. Curtis, “Soutis, C. Prediction of the post-impact compressive strength of CFRP laminated composites”, Composites Science and Technology, 56:6 (1996), 677–684 | DOI

[7] O.A. Khondkera, K.H. Leong, I. Herszberg, H. Hamada, “Impact and compression-after-impact performance of weft-knitted glass textile composites”, Composites Part A: Applied Science and Manufacturing, 36:5 (2005), 638–648 | DOI

[8] A. Dogan, V. Ar?kan, “Low-Velocity Impact Response of E-Glass Reinforced Thermoset And Thermoplastic Based Sandwich Composites”, Composites Part B: Engineering, 127 (2017), 63–69 | DOI

[9] ASTM. Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates, D7137/D7137M-12, West Conshohocken, PA, 2012 | DOI

[10] Airbus Standard. Determination of Compression Strength after Impact, AITM 1-0010, 2010

[11] B.G. Falzon, W. Tan, “Falzon, B.G. Predicting Impact Damage. Residual Strength and Crashworthiness of Composite Structures”, SAE International Journal of Materials and Manufacturing, 9:3 (2016), 718–728 | DOI

[12] W. Tan, B.G. Falzon, L.N.S. Chiu, M. Price, “Predicting Low Velocity Impact Damage and Compression-After-Impact (CAI) Behaviour of Composite Laminates”, Composites Part A: Applied Science and Manufacturing, 71 (2015), 212–226 | DOI

[13] M. Dale, B.A. Acha, L.A. Carlsson, “Low Velocity Impact and Compression after Impact Characterization of Woven Carbon/Vinylester at Dry and Water Saturated Conditions”, Composite Structures, 94:5 (2012), 1582–1589 | DOI

[14] P.A.A.E. Mendes, M.V. Donadon, “Numerical Prediction of Compression after Impact Behavior of Woven Composite Laminates”, Composite Structures, 113 (2014), 476–491 | DOI

[15] D.J. Bull, S.M. Spearing, I. Sinclair, “Observations of Damage Development from Compression-After-Impact Experiments using Ex Situ Micro-Focus Computed Tomography”, Composites Science and Technology, 97 (2014), 106–114 | DOI

[16] D.D.R. Cartié, P.E. Irving, “Effect of Resin and Fibre Properties on Impact and Compression after Impact Performance of CFRP”, Composites Part A: Applied Science and Manufacturing, 33:4 (2002), 483–493 | DOI

[17] G.A.O. Davies, D. Hitchings, T. Besant et al., “Compression after Impact Strength of Composite Sandwich Panels”, Composite Structures, 63:1 (2004), 1–9 | DOI

[18] D. Ghelli, G.Minak, “Low Velocity Impact and Compression after Impact Tests on Thin Carbon/Epoxy Laminates”, Composites Part B: Engineering, 42:7 (2011), 2067–2079 | DOI

[19] F.A. Habib, “A New Method for Evaluating the Residual Compression Strength of Composites after Impact”, Composite Structures, 53:3 (2001), 309–316 | DOI

[20] S. Kazemahvazi, M. Nilsson, D. Zenkert, “Residual strength of GRP laminates with multiple randomly distributed fragment impacts”, Composites Part A: Applied Science and Manufacturing, 60 (2014), 66–74 | DOI

[21] L.E. Asp, N. Soren, S. Singh, “An Experimental Investigation of the Influence of Delamination Growth on the Residual Strength of Impacted Laminates”, Composites Part A: Applied Science and Manufacturing, 32:3 (2001), 1229–1235 | DOI

[22] J. Baaran, L. Kärger, A. Wetzel, “Efcient Prediction of Damage Resistance and Tolerance of Composite Aerospace Structures”, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 222:2 (2008), 179–188 | DOI

[23] A.H. Baluch, O. Falcó, J.L. Jiménez et al., “An Efficient Numerical Approach to The Prediction of Laminate Tolerance to Barely Visible Impact Damage”, Composite Structures, 225 (2019), 111017 | DOI

[24] B. Fedulov, A. Fedorenko, “The Analysis of the Worst-Case Distribution of the Damage in Composite Material Imposed by a Low-Velocity Impact”, Procedia Structural Integrity, 18 (2019), 399–405 | DOI

[25] O.S. Buslaeva, S.B. Sapozhnikov, A.V. Bezmelnitsyn et al., “Thin Indicator Films to Assess the Residual Strength of a GFRP after a Local Contact Action”, Mechanics of Composite Materials, 57:1, 47–56 | DOI | MR

[26] G.C. Papanicolaou, “New Approach for Residual Compressive Strength Prediction of Impacted CFRP Laminates”, Composites, 26:7 (1995), 517–523 | DOI

[27] O.T. Topac, B. Gozluklu, E. Gurses, D. Coker, “A Experimental and computational study of the damage process in CFRP composite beams under low-velocity impact”, Composites Part A: Applied Science and Manufacturing, 92 (2017), 167–182 | DOI

[28] O.S. Buslaeva, S.B. Sapozhnikov, A.V. Bezmelnitsyn et al., “Thin Indicator Films to Assess the Residual Strength of a GFRP after a Local Contact Action”, Mechanics of Composite Materials, 57:1, 47–56 | DOI | MR

[29] GOST 33495-2015. Polymer Composites. Test Method for Compression after Impact, FGUP “Standartinform”, M., 2002, 20 pp. (in Russ.)

[30] S.B. Sapozhnikov, K.A. Guseynov, M.V. Zhikharev, “Multiphase Fea-Approach for Non-Linear Deformation Prediction and Fibre-Reinforced Plastics Failure”, Mechanics of Composite Materials, 59:2 (2023), 283–298 | DOI

[31] K. Guseinov, S.B. Sapozhnikov, O.A. Kudryavtsev, “Features of Three-Point Bending Tests for Determining Out-Of-Plane Shear Modulus of Layered Composites”, Mechanics of Composite Materials, 58:2 (2022), 155–168 | DOI