Keywords: modelling, nonlinearity, mFEA approach, impact defect, experiment.
@article{VYURM_2023_15_3_a4,
author = {S. B. Sapozhnikov and O. S. Buslaeva},
title = {Numerical and experimental study of compression after impact {(CAI-test)} of a fabric composite with open hole defects},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {43--54},
year = {2023},
volume = {15},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a4/}
}
TY - JOUR AU - S. B. Sapozhnikov AU - O. S. Buslaeva TI - Numerical and experimental study of compression after impact (CAI-test) of a fabric composite with open hole defects JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2023 SP - 43 EP - 54 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a4/ LA - ru ID - VYURM_2023_15_3_a4 ER -
%0 Journal Article %A S. B. Sapozhnikov %A O. S. Buslaeva %T Numerical and experimental study of compression after impact (CAI-test) of a fabric composite with open hole defects %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2023 %P 43-54 %V 15 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a4/ %G ru %F VYURM_2023_15_3_a4
S. B. Sapozhnikov; O. S. Buslaeva. Numerical and experimental study of compression after impact (CAI-test) of a fabric composite with open hole defects. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 3, pp. 43-54. http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a4/
[1] G. Eyer, O. Montagnier, C. Hochard, J.-P. Charles, “Effect of Matrix Damage on Compressive Strength in the Fiber Direction for Laminated Composites”, Composites Part A Applied Science and Manufacturing, 94 (2017), 86–92 | DOI
[2] M.F.S.F. de Moura, J.P.M. Goncßalves, A.T. Marques, P.M.S.T. de Castro, “Prediction of Compressive Strength of Carbon-Epoxy Laminates Containing Delamination by Using a Mixed-Mode Damage Model”, Compos Struct., 50:2 (2000), 151–157 | DOI
[3] W.J. Cantwell, P.T. Curtis, J. Morton, “An Assessment of the Impact Performance of CFRP Reinforced with High-Strain Carbon Fibres”, Composites Science and Technology, 25:2 (1986), 133–148 | DOI
[4] J.C. Prichard, P.J. Hogg, “The Role of Impact Damage in Post-Impact Compression Testing”, Composites, 21:6 (1990), 503–511 | DOI
[5] T. Ishikawa, S. Sugimoto, M. Matsushima, Y. Hayashi, “Some Experimental Findings in Compression-Afterimpact (CAI) Tests of CF/PEEK (APC-2) and Conventional CF/Epoxy Flat Plates”, Compos. Sci. Technol., 55:4 (1995), 349–363 | DOI
[6] C. Soutis, P.T. Curtis, “Soutis, C. Prediction of the post-impact compressive strength of CFRP laminated composites”, Composites Science and Technology, 56:6 (1996), 677–684 | DOI
[7] O.A. Khondkera, K.H. Leong, I. Herszberg, H. Hamada, “Impact and compression-after-impact performance of weft-knitted glass textile composites”, Composites Part A: Applied Science and Manufacturing, 36:5 (2005), 638–648 | DOI
[8] A. Dogan, V. Ar?kan, “Low-Velocity Impact Response of E-Glass Reinforced Thermoset And Thermoplastic Based Sandwich Composites”, Composites Part B: Engineering, 127 (2017), 63–69 | DOI
[9] ASTM. Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates, D7137/D7137M-12, West Conshohocken, PA, 2012 | DOI
[10] Airbus Standard. Determination of Compression Strength after Impact, AITM 1-0010, 2010
[11] B.G. Falzon, W. Tan, “Falzon, B.G. Predicting Impact Damage. Residual Strength and Crashworthiness of Composite Structures”, SAE International Journal of Materials and Manufacturing, 9:3 (2016), 718–728 | DOI
[12] W. Tan, B.G. Falzon, L.N.S. Chiu, M. Price, “Predicting Low Velocity Impact Damage and Compression-After-Impact (CAI) Behaviour of Composite Laminates”, Composites Part A: Applied Science and Manufacturing, 71 (2015), 212–226 | DOI
[13] M. Dale, B.A. Acha, L.A. Carlsson, “Low Velocity Impact and Compression after Impact Characterization of Woven Carbon/Vinylester at Dry and Water Saturated Conditions”, Composite Structures, 94:5 (2012), 1582–1589 | DOI
[14] P.A.A.E. Mendes, M.V. Donadon, “Numerical Prediction of Compression after Impact Behavior of Woven Composite Laminates”, Composite Structures, 113 (2014), 476–491 | DOI
[15] D.J. Bull, S.M. Spearing, I. Sinclair, “Observations of Damage Development from Compression-After-Impact Experiments using Ex Situ Micro-Focus Computed Tomography”, Composites Science and Technology, 97 (2014), 106–114 | DOI
[16] D.D.R. Cartié, P.E. Irving, “Effect of Resin and Fibre Properties on Impact and Compression after Impact Performance of CFRP”, Composites Part A: Applied Science and Manufacturing, 33:4 (2002), 483–493 | DOI
[17] G.A.O. Davies, D. Hitchings, T. Besant et al., “Compression after Impact Strength of Composite Sandwich Panels”, Composite Structures, 63:1 (2004), 1–9 | DOI
[18] D. Ghelli, G.Minak, “Low Velocity Impact and Compression after Impact Tests on Thin Carbon/Epoxy Laminates”, Composites Part B: Engineering, 42:7 (2011), 2067–2079 | DOI
[19] F.A. Habib, “A New Method for Evaluating the Residual Compression Strength of Composites after Impact”, Composite Structures, 53:3 (2001), 309–316 | DOI
[20] S. Kazemahvazi, M. Nilsson, D. Zenkert, “Residual strength of GRP laminates with multiple randomly distributed fragment impacts”, Composites Part A: Applied Science and Manufacturing, 60 (2014), 66–74 | DOI
[21] L.E. Asp, N. Soren, S. Singh, “An Experimental Investigation of the Influence of Delamination Growth on the Residual Strength of Impacted Laminates”, Composites Part A: Applied Science and Manufacturing, 32:3 (2001), 1229–1235 | DOI
[22] J. Baaran, L. Kärger, A. Wetzel, “Efcient Prediction of Damage Resistance and Tolerance of Composite Aerospace Structures”, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 222:2 (2008), 179–188 | DOI
[23] A.H. Baluch, O. Falcó, J.L. Jiménez et al., “An Efficient Numerical Approach to The Prediction of Laminate Tolerance to Barely Visible Impact Damage”, Composite Structures, 225 (2019), 111017 | DOI
[24] B. Fedulov, A. Fedorenko, “The Analysis of the Worst-Case Distribution of the Damage in Composite Material Imposed by a Low-Velocity Impact”, Procedia Structural Integrity, 18 (2019), 399–405 | DOI
[25] O.S. Buslaeva, S.B. Sapozhnikov, A.V. Bezmelnitsyn et al., “Thin Indicator Films to Assess the Residual Strength of a GFRP after a Local Contact Action”, Mechanics of Composite Materials, 57:1, 47–56 | DOI | MR
[26] G.C. Papanicolaou, “New Approach for Residual Compressive Strength Prediction of Impacted CFRP Laminates”, Composites, 26:7 (1995), 517–523 | DOI
[27] O.T. Topac, B. Gozluklu, E. Gurses, D. Coker, “A Experimental and computational study of the damage process in CFRP composite beams under low-velocity impact”, Composites Part A: Applied Science and Manufacturing, 92 (2017), 167–182 | DOI
[28] O.S. Buslaeva, S.B. Sapozhnikov, A.V. Bezmelnitsyn et al., “Thin Indicator Films to Assess the Residual Strength of a GFRP after a Local Contact Action”, Mechanics of Composite Materials, 57:1, 47–56 | DOI | MR
[29] GOST 33495-2015. Polymer Composites. Test Method for Compression after Impact, FGUP “Standartinform”, M., 2002, 20 pp. (in Russ.)
[30] S.B. Sapozhnikov, K.A. Guseynov, M.V. Zhikharev, “Multiphase Fea-Approach for Non-Linear Deformation Prediction and Fibre-Reinforced Plastics Failure”, Mechanics of Composite Materials, 59:2 (2023), 283–298 | DOI
[31] K. Guseinov, S.B. Sapozhnikov, O.A. Kudryavtsev, “Features of Three-Point Bending Tests for Determining Out-Of-Plane Shear Modulus of Layered Composites”, Mechanics of Composite Materials, 58:2 (2022), 155–168 | DOI