@article{VYURM_2023_15_3_a3,
author = {R. Okatev and P. G. Frick and I. V. Kolesnichenko},
title = {Hartmann flow in a fluid layer with spatially inhomogeneous properties},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {34--42},
year = {2023},
volume = {15},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a3/}
}
TY - JOUR AU - R. Okatev AU - P. G. Frick AU - I. V. Kolesnichenko TI - Hartmann flow in a fluid layer with spatially inhomogeneous properties JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2023 SP - 34 EP - 42 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a3/ LA - ru ID - VYURM_2023_15_3_a3 ER -
%0 Journal Article %A R. Okatev %A P. G. Frick %A I. V. Kolesnichenko %T Hartmann flow in a fluid layer with spatially inhomogeneous properties %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2023 %P 34-42 %V 15 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a3/ %G ru %F VYURM_2023_15_3_a3
R. Okatev; P. G. Frick; I. V. Kolesnichenko. Hartmann flow in a fluid layer with spatially inhomogeneous properties. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 3, pp. 34-42. http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a3/
[1] J. Hartmann, Hg Dynamics I. Theory of the Laminar Flow of an Electrically Conductive Liquid in a Homogeneous Magnetic Field, Levin Munksgaard, Ejnar Munksgaard, København, 1937, 28 pp.
[2] J. Hartmann, F. Lazarus, Hg Dynamics II. Experimental Investigations on the Flow of Mercury in a Homogeneous Magnetic Field, Levin Munksgaard, København, 1937, 45 pp.
[3] Branover G.G., Tsynober A.B., Magnetohydrodynamics of Incompressible Media, Nauka Publ, M., 1970, 379 pp.
[4] O. Zikanov, D. Krasnov, T. Boeck et al., “Laminar-Turbulent Transition in Magnetohydrodynamic Duct, Pipe, and Channel Flows”, Applied Mechanics Reviews, 66:3 (2014), 030802, 17 pp. | DOI
[5] O. Zikanov, I. Belyaev, Y. Listratov et al., “Mixed Convection in Pipe and Duct Flows with Strong Magnetic Fields”, Applied Mechanics Reviews, 73:1 (2021), 010801, 35 pp. | DOI
[6] I.A. Melnikov, E.V. Sviridov, V.G. Sviridov, N.G. Razuvanov, “Experimental Investigation of MHD Heat Transfer in a Vertical Round Tube Affected by Transverse Magnetic Field”, Fusion Engineering and Design, 112 (2016), 505–512 | DOI
[7] I.R. Kirillov, D.M. Obukhov, V.G. Sviridov et al., “Buoyancy Effects in Vertical Rectangular Duct with Coplanar Magnetic Field and Single Sided Heat Load - Downward and Upward Flow”, Fusion Engineering and Design, 127 (2018), 226–233 | DOI
[8] I. Belyaev, P. Sardov, I. Melnikov, P. Frick, “Limits of Strong Magneto-Convective Fluctuations in Liquid Metal Flow in a Heated Vertical Pipe Affected By Transverse Magnetic Field”, International Journal of Thermal Sciences, 161 (2021), 106773 | DOI
[9] S. Denisov, V. Dolgikh, S. Khripchenko et al., “The Effect of Traveling and Rotating Magnetic Fields on The Structure of Aluminum Alloy During its Crystallization in a Cylindrical Crucible”, Magnetohydrodynamics, 50:4 (2014), 407–422 | DOI
[10] J. Stiller, K. Koal, W.E. Nagel et al., “Liquid Metal Flows Driven by Rotating and Traveling Magnetic Fields”, European Physical Journal: Special Topics, 220:1 (2013), 111–122 | DOI
[11] I. Kolesnichenko, “Investigation of Electromagnetic Force Action on Two-Phase Electrically Conducting Media in a Flat Layer”, Magnetohydrodynamics, 49 (2013), 217–222 | DOI
[12] L. Zhang, S. Wang, A. Dong et al., “Application of Electromagnetic (EM) Separation Technology to Metal Refining Processes: A Review”, Metallurgical and Materials Transactions B, 45 (2014), 2153–2185 | DOI
[13] E.I. Dobychin, V.I. Popov, “Force Action of an Electromagnetic Field on the Particles of an Inhomogeneous Medium”, Magnetohydrodynamics, 7:2 (1971), 163–166