Hartmann flow in a fluid layer with spatially inhomogeneous properties
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 3, pp. 34-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this study we consider the flow of a spatially-inhomogeneous electrically conductive fluid between parallel planes in a transverse magnetic field. The distributions of electrical conductivity and viscosity of the fluid are given by linear functions. The slopes of these distributions characterize the maximum deviation of the fluid properties from their mean values. We show that inhomogeneity of the fluid properties leads to distortion of the velocity profiles. The resulting profiles are asymmetric and have inflection points. We use a quantity equal to the ratio of flow rates in the upper and lower halves of the layer as a quantitative measure of asymmetry. We determine the relationship between this quantity, the average Hartmann number, and the parameters of the distributions of inhomogeneous properties. We show that starting from a relatively small mean Hartmann number, the inflection points in the velocity profiles appear for any values of the distribution parameters. We provide estimates of characteristic temperatures and concentrations of non-conducting impurity for liquid sodium, at which the described effects appear.
Keywords: magnetohydrodynamics, Hartmann flow, inhomogeneous properties, electric conductivity.
@article{VYURM_2023_15_3_a3,
     author = {R. Okatev and P. G. Frick and I. V. Kolesnichenko},
     title = {Hartmann flow in a fluid layer with spatially inhomogeneous properties},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {34--42},
     year = {2023},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a3/}
}
TY  - JOUR
AU  - R. Okatev
AU  - P. G. Frick
AU  - I. V. Kolesnichenko
TI  - Hartmann flow in a fluid layer with spatially inhomogeneous properties
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2023
SP  - 34
EP  - 42
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a3/
LA  - ru
ID  - VYURM_2023_15_3_a3
ER  - 
%0 Journal Article
%A R. Okatev
%A P. G. Frick
%A I. V. Kolesnichenko
%T Hartmann flow in a fluid layer with spatially inhomogeneous properties
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2023
%P 34-42
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a3/
%G ru
%F VYURM_2023_15_3_a3
R. Okatev; P. G. Frick; I. V. Kolesnichenko. Hartmann flow in a fluid layer with spatially inhomogeneous properties. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 3, pp. 34-42. http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a3/

[1] J. Hartmann, Hg Dynamics I. Theory of the Laminar Flow of an Electrically Conductive Liquid in a Homogeneous Magnetic Field, Levin Munksgaard, Ejnar Munksgaard, København, 1937, 28 pp.

[2] J. Hartmann, F. Lazarus, Hg Dynamics II. Experimental Investigations on the Flow of Mercury in a Homogeneous Magnetic Field, Levin Munksgaard, København, 1937, 45 pp.

[3] Branover G.G., Tsynober A.B., Magnetohydrodynamics of Incompressible Media, Nauka Publ, M., 1970, 379 pp.

[4] O. Zikanov, D. Krasnov, T. Boeck et al., “Laminar-Turbulent Transition in Magnetohydrodynamic Duct, Pipe, and Channel Flows”, Applied Mechanics Reviews, 66:3 (2014), 030802, 17 pp. | DOI

[5] O. Zikanov, I. Belyaev, Y. Listratov et al., “Mixed Convection in Pipe and Duct Flows with Strong Magnetic Fields”, Applied Mechanics Reviews, 73:1 (2021), 010801, 35 pp. | DOI

[6] I.A. Melnikov, E.V. Sviridov, V.G. Sviridov, N.G. Razuvanov, “Experimental Investigation of MHD Heat Transfer in a Vertical Round Tube Affected by Transverse Magnetic Field”, Fusion Engineering and Design, 112 (2016), 505–512 | DOI

[7] I.R. Kirillov, D.M. Obukhov, V.G. Sviridov et al., “Buoyancy Effects in Vertical Rectangular Duct with Coplanar Magnetic Field and Single Sided Heat Load - Downward and Upward Flow”, Fusion Engineering and Design, 127 (2018), 226–233 | DOI

[8] I. Belyaev, P. Sardov, I. Melnikov, P. Frick, “Limits of Strong Magneto-Convective Fluctuations in Liquid Metal Flow in a Heated Vertical Pipe Affected By Transverse Magnetic Field”, International Journal of Thermal Sciences, 161 (2021), 106773 | DOI

[9] S. Denisov, V. Dolgikh, S. Khripchenko et al., “The Effect of Traveling and Rotating Magnetic Fields on The Structure of Aluminum Alloy During its Crystallization in a Cylindrical Crucible”, Magnetohydrodynamics, 50:4 (2014), 407–422 | DOI

[10] J. Stiller, K. Koal, W.E. Nagel et al., “Liquid Metal Flows Driven by Rotating and Traveling Magnetic Fields”, European Physical Journal: Special Topics, 220:1 (2013), 111–122 | DOI

[11] I. Kolesnichenko, “Investigation of Electromagnetic Force Action on Two-Phase Electrically Conducting Media in a Flat Layer”, Magnetohydrodynamics, 49 (2013), 217–222 | DOI

[12] L. Zhang, S. Wang, A. Dong et al., “Application of Electromagnetic (EM) Separation Technology to Metal Refining Processes: A Review”, Metallurgical and Materials Transactions B, 45 (2014), 2153–2185 | DOI

[13] E.I. Dobychin, V.I. Popov, “Force Action of an Electromagnetic Field on the Particles of an Inhomogeneous Medium”, Magnetohydrodynamics, 7:2 (1971), 163–166