Analysis of the stochastic Wentzell system of fluid filtration equations in a circle and on its boundary
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 3, pp. 15-22
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Wentzell boundary condition problems for linear elliptic equations of second order have been studied by various methods. Over time, the condition has come to be understood as a description of a process occurring on the boundary of a domain and affected by processes inside the domain. Since Wentzell boundary conditions in the mathematical literature have been considered from two points of view (in the classical and neoclassical cases), the aim of this paper is to analyse the stochastic Wentzell system of filtration equations in a circle and on its boundary in the space of differentiable K-“noise”. In particular, we prove the existence and uniqueness of the solution that determines quantitative predictions of changes in the geochemical regime of groundwater in the case of non-pressure filtration at the boundary of two media (in the region and on its boundary).
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Wentzell system, Nelson–Glicklich derivative, Wentzell boundary conditions.
Mots-clés : filtration equation
                    
                  
                
                
                Mots-clés : filtration equation
@article{VYURM_2023_15_3_a1,
     author = {N. S. Goncharov and G. A. Sviridyuk},
     title = {Analysis of the stochastic {Wentzell} system of fluid filtration equations in a circle and on its boundary},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {15--22},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a1/}
}
                      
                      
                    TY - JOUR AU - N. S. Goncharov AU - G. A. Sviridyuk TI - Analysis of the stochastic Wentzell system of fluid filtration equations in a circle and on its boundary JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2023 SP - 15 EP - 22 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a1/ LA - en ID - VYURM_2023_15_3_a1 ER -
%0 Journal Article %A N. S. Goncharov %A G. A. Sviridyuk %T Analysis of the stochastic Wentzell system of fluid filtration equations in a circle and on its boundary %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2023 %P 15-22 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a1/ %G en %F VYURM_2023_15_3_a1
N. S. Goncharov; G. A. Sviridyuk. Analysis of the stochastic Wentzell system of fluid filtration equations in a circle and on its boundary. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 3, pp. 15-22. http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a1/
