Analysis of the stochastic Wentzell system of fluid filtration equations in a circle and on its boundary
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 3, pp. 15-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Wentzell boundary condition problems for linear elliptic equations of second order have been studied by various methods. Over time, the condition has come to be understood as a description of a process occurring on the boundary of a domain and affected by processes inside the domain. Since Wentzell boundary conditions in the mathematical literature have been considered from two points of view (in the classical and neoclassical cases), the aim of this paper is to analyse the stochastic Wentzell system of filtration equations in a circle and on its boundary in the space of differentiable K-“noise”. In particular, we prove the existence and uniqueness of the solution that determines quantitative predictions of changes in the geochemical regime of groundwater in the case of non-pressure filtration at the boundary of two media (in the region and on its boundary).
Keywords: Wentzell system, Nelson–Glicklich derivative, Wentzell boundary conditions.
Mots-clés : filtration equation
@article{VYURM_2023_15_3_a1,
     author = {N. S. Goncharov and G. A. Sviridyuk},
     title = {Analysis of the stochastic {Wentzell} system of fluid filtration equations in a circle and on its boundary},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {15--22},
     year = {2023},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a1/}
}
TY  - JOUR
AU  - N. S. Goncharov
AU  - G. A. Sviridyuk
TI  - Analysis of the stochastic Wentzell system of fluid filtration equations in a circle and on its boundary
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2023
SP  - 15
EP  - 22
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a1/
LA  - en
ID  - VYURM_2023_15_3_a1
ER  - 
%0 Journal Article
%A N. S. Goncharov
%A G. A. Sviridyuk
%T Analysis of the stochastic Wentzell system of fluid filtration equations in a circle and on its boundary
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2023
%P 15-22
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a1/
%G en
%F VYURM_2023_15_3_a1
N. S. Goncharov; G. A. Sviridyuk. Analysis of the stochastic Wentzell system of fluid filtration equations in a circle and on its boundary. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 3, pp. 15-22. http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a1/

[1] Barenblatt, G.I., Zheltov, Iu.P., Kochina, I.N., “Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks [Strata]”, Journal of Applied Mathematics and Mechanics, 24:5 (1960), 1286–1303 | DOI | Zbl

[2] Goncharov N.S., Zagrebina S.A., Sviridyuk G.A., “Non-Uniqueness of Solutions to Boundary Value Problems with Wentzell Condition”, Bulletin of the South Ural State University. Series: Mathematimathcal Modeling, Programming and Computer Software, 14:4 (2021), 102–105 | DOI | Zbl

[3] Favini A., Sviridyuk G.A., Manakova N.A., “Linear Sobolev Type Equations with Relatively P-Sectorial Operators in Space of “Noises””, Abstract and Applied Analysis, 2015 (2015), 697410 | DOI | MR | Zbl

[4] Favini A., Sviridyuk G.A., Zamyshlyaeva A.A., “One Class of Sobolev Type Equations of Higher Order with Additive “White Noise””, Communications on Pure and Applied Analysis, 15:1 (2016), 185–196 | DOI | MR | Zbl

[5] Favini A., Sviridiuk G.A., Sagadeeva M.A., “Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of “Noises””, Mediterranean Journal of Mathematics, 13:6 (2016), 4607–4621 | DOI | MR | Zbl

[6] Favini A., Zagrebina S.A., Sviridiuk G.A., “Multipoint Initial-Final Value Problems for Dynamical Sobolev-Type Equations in the Space of Noises”, Electronic Journal of Differential Equations, 2018 (2018), 128 | MR | Zbl

[7] Favini A., Zagrebina S.A., Sviridiuk G.A., “The Multipoint Initial - Final Value Condition for the Hoff Equations on Geometrical Graph in Spaces of K-“noises””, Mediterranean Journal of Mathematics, 19 (2022), 53 | DOI | MR | Zbl

[8] Lions J.-L., Magenes E., Problemes aux Limites non Homogenes et Applications, v. 1, Travaux et Recherches Mathematiques, 17, Dunod, Paris, 1968, 372 pp. | MR | Zbl

[9] Wentzell A.D., “On Boundary Conditions For Multidimensional Diffusion Processes”, Theory of Probability and its Applications, 4:2 (1959), 164–177 | DOI | MR

[10] Gliklikh Yu.E., Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, N.Y.–London–Dordrecht–Heidelberg, 2011, 436 pp. | DOI | MR | Zbl

[11] Kitaeva O.G., Shafranov D.E., Sviridiuk G.A., “Exponential Dichotomies in the Barenblatt-Zheltov-Kochina Model in Spaces of Differential Forms with “Noise””, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming and Computer Software (Bulletin SUSU MMCS), 2:12 (2019), 47–57 | DOI | Zbl

[12] Goncharov N.S., “Stochastic Barenblatt-Zheltov-Kochina Model on the Interval with Wentzell Boundary Conditions”, Global and Stochastic Analysis, 7:1 (2020), 11–23

[13] Sviridyuk G.A., Zamyshlyaeva A.A., Zagrebina S.A., “Multipoint Initial-Final Problem for one Class of Sobolev Type Models of Higher Order with Additive “White Noise””, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 11:3 (2018), 103–117 | DOI | Zbl