Mots-clés : filtration equation
@article{VYURM_2023_15_3_a1,
author = {N. S. Goncharov and G. A. Sviridyuk},
title = {Analysis of the stochastic {Wentzell} system of fluid filtration equations in a circle and on its boundary},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {15--22},
year = {2023},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a1/}
}
TY - JOUR AU - N. S. Goncharov AU - G. A. Sviridyuk TI - Analysis of the stochastic Wentzell system of fluid filtration equations in a circle and on its boundary JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2023 SP - 15 EP - 22 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a1/ LA - en ID - VYURM_2023_15_3_a1 ER -
%0 Journal Article %A N. S. Goncharov %A G. A. Sviridyuk %T Analysis of the stochastic Wentzell system of fluid filtration equations in a circle and on its boundary %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2023 %P 15-22 %V 15 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a1/ %G en %F VYURM_2023_15_3_a1
N. S. Goncharov; G. A. Sviridyuk. Analysis of the stochastic Wentzell system of fluid filtration equations in a circle and on its boundary. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 3, pp. 15-22. http://geodesic.mathdoc.fr/item/VYURM_2023_15_3_a1/
[1] Barenblatt, G.I., Zheltov, Iu.P., Kochina, I.N., “Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks [Strata]”, Journal of Applied Mathematics and Mechanics, 24:5 (1960), 1286–1303 | DOI | Zbl
[2] Goncharov N.S., Zagrebina S.A., Sviridyuk G.A., “Non-Uniqueness of Solutions to Boundary Value Problems with Wentzell Condition”, Bulletin of the South Ural State University. Series: Mathematimathcal Modeling, Programming and Computer Software, 14:4 (2021), 102–105 | DOI | Zbl
[3] Favini A., Sviridyuk G.A., Manakova N.A., “Linear Sobolev Type Equations with Relatively P-Sectorial Operators in Space of “Noises””, Abstract and Applied Analysis, 2015 (2015), 697410 | DOI | MR | Zbl
[4] Favini A., Sviridyuk G.A., Zamyshlyaeva A.A., “One Class of Sobolev Type Equations of Higher Order with Additive “White Noise””, Communications on Pure and Applied Analysis, 15:1 (2016), 185–196 | DOI | MR | Zbl
[5] Favini A., Sviridiuk G.A., Sagadeeva M.A., “Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of “Noises””, Mediterranean Journal of Mathematics, 13:6 (2016), 4607–4621 | DOI | MR | Zbl
[6] Favini A., Zagrebina S.A., Sviridiuk G.A., “Multipoint Initial-Final Value Problems for Dynamical Sobolev-Type Equations in the Space of Noises”, Electronic Journal of Differential Equations, 2018 (2018), 128 | MR | Zbl
[7] Favini A., Zagrebina S.A., Sviridiuk G.A., “The Multipoint Initial - Final Value Condition for the Hoff Equations on Geometrical Graph in Spaces of K-“noises””, Mediterranean Journal of Mathematics, 19 (2022), 53 | DOI | MR | Zbl
[8] Lions J.-L., Magenes E., Problemes aux Limites non Homogenes et Applications, v. 1, Travaux et Recherches Mathematiques, 17, Dunod, Paris, 1968, 372 pp. | MR | Zbl
[9] Wentzell A.D., “On Boundary Conditions For Multidimensional Diffusion Processes”, Theory of Probability and its Applications, 4:2 (1959), 164–177 | DOI | MR
[10] Gliklikh Yu.E., Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, N.Y.–London–Dordrecht–Heidelberg, 2011, 436 pp. | DOI | MR | Zbl
[11] Kitaeva O.G., Shafranov D.E., Sviridiuk G.A., “Exponential Dichotomies in the Barenblatt-Zheltov-Kochina Model in Spaces of Differential Forms with “Noise””, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming and Computer Software (Bulletin SUSU MMCS), 2:12 (2019), 47–57 | DOI | Zbl
[12] Goncharov N.S., “Stochastic Barenblatt-Zheltov-Kochina Model on the Interval with Wentzell Boundary Conditions”, Global and Stochastic Analysis, 7:1 (2020), 11–23
[13] Sviridyuk G.A., Zamyshlyaeva A.A., Zagrebina S.A., “Multipoint Initial-Final Problem for one Class of Sobolev Type Models of Higher Order with Additive “White Noise””, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 11:3 (2018), 103–117 | DOI | Zbl