Magnetodynamics of a dilute ferrocolloid in a shear flow
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 2, pp. 59-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is devoted to a theoretical study of a dilute suspension of magnetic nanoparticles under the combined action of a simple shear flow and a constant magnetic field. The main attention is paid to the dynamics of the magnetization vector of the system. It is shown that at any nonzero temperature the magnetization takes a stationary orientation in a finite time. The direction of magnetization generally does not coincide with the direction of the field. Equilibrium and non-equilibrium magnetization components are calculated as functions of two dimensionless parameters – Mason number (i.e., ratio of hydrodynamic torque to magnetic) and Peclet number (i. e., ratio of hydrodynamic moment to thermal).
Mots-clés : magnetic nanoparticles, ferrocolloid
Keywords: shear flow, nonequilibrium magnetodynamics.
@article{VYURM_2023_15_2_a7,
     author = {A. A. Kuznetsov},
     title = {Magnetodynamics of a dilute ferrocolloid in a shear flow},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {59--65},
     year = {2023},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a7/}
}
TY  - JOUR
AU  - A. A. Kuznetsov
TI  - Magnetodynamics of a dilute ferrocolloid in a shear flow
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2023
SP  - 59
EP  - 65
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a7/
LA  - ru
ID  - VYURM_2023_15_2_a7
ER  - 
%0 Journal Article
%A A. A. Kuznetsov
%T Magnetodynamics of a dilute ferrocolloid in a shear flow
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2023
%P 59-65
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a7/
%G ru
%F VYURM_2023_15_2_a7
A. A. Kuznetsov. Magnetodynamics of a dilute ferrocolloid in a shear flow. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 2, pp. 59-65. http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a7/

[1] Shliomis M.I., “Magnetic fluids”, Physics-Uspekhi, 17:2 (1974), 153–169 | DOI | DOI

[2] S. Abramchuk, E. Kramarenko, D. Grishin et al., “Novel Highly Elastic Magnetic Materials for Dampers and Seals: Part II. Material Behavior in a Magnetic Field”, Polymers for Advanced Technologies, 18:7 (2007), 513–518 | DOI

[3] W. Cherief, Y. Avenas, S. Ferrouillat et al., “Affecting Forced Convection Enhancement in Ferrofluid Cooling Systems”, Applied Thermal Engineering, 123 (2017), 156–166 | DOI

[4] W. Huang, C. Shen, S. Liao, X. Wang, “Study on the Ferrofluid Lubrication with an External Magnetic Field”, Tribology Letters, 41:1 (2011), 145–151 | DOI

[5] R. Tietze, S. Lyer, S. D?rr et al., “Efficient Drug-Delivery using Magnetic Nanoparticles-Biodistribution and Therapeutic Effects in Tumour Bearing Rabbits”, Nanomedicine: Nanotechnology, Biology and Medicine, 9:7 (2013), 961–971 | DOI

[6] E.A. Périgo, G. Hemery, O. Sandre et al., “Fundamentals and Advances in Magnetic Hyperthermia”, Applied Physics Reviews, 2:4 (2015), 041302 | DOI

[7] Z.W. Tay, P. Chandrasekharan, A. Chiu-Lam et al., “Magnetic Particle Imaging-Guided Heating in vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy”, ACS nano, 12:4 (2018), 3699–3713 | DOI

[8] Ivanov A.O., Kantorovich S.S., Reznikov E.N. et al., “Magnetic Properties of Polydisperse Ferrofluids: A Critical Comparison between Experiment, Theory, and Computer Simulation”, Physical Review E, 75:6 (2007), 061405 | DOI

[9] D. Soto-Aquino, C. Rinaldi, “Magnetoviscosity in dilute ferrofluids from rotational Brownian dynamics simulations”, Physical Review E, 82:4 (2010), 046310 | DOI

[10] A.Y. Zubarev, S. Odenbach, J. Fleischer, “Rheological Properties of Dense Ferrofluids. Effect of Chain-Like Aggregates”, Journal of Magnetism and Magnetic Materials, 252 (2002), 241–243 | DOI

[11] Y.L. Raikher, M.I. Shliomis, “The Effective Field Method in the Orientational Kinetics of Magnetic Fluids and Liquid Crystals”, Advances in Chemical Physics, 87 (1994), 595–752 | DOI

[12] H. Brenner, “Rheology of a Dilute Suspension of Dipolar Spherical Particles in an External Field”, Journal of Colloid and Interface Science, 32:1 (1970), 141–158 | DOI

[13] D.J. Klingenberg, J.C. Ulicny, M.A. Golden, “Klingenberg, D.J. Mason Numbers for Magnetorheology”, Journal of Rheology, 51:5 (2007), 883–893 | DOI

[14] M.A. Martsenyuk, Y.L. Raikher, M.I. Shliomis, “Martsenyuk, M.A. On the Kinetics of Magnetization of Suspension of Ferromagnetic Particles”, Soviet Physics-JETP, 38:2 (1974), 413–416

[15] M.I. Shliomis, “Ferrohydrodynamics: Testing a Third Magnetization Equation”, Physical Review E, 64:6 (2001), 060501 | DOI | MR

[16] A.A. Kuznetsov, A.F. Pshenichnikov, “Kuznetsov, A.A. Nonlinear response of a dilute ferrofluid to an alternating magnetic field”, Journal of Molecular Liquids, 346 (2022), 117449 | DOI

[17] https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html