Keywords: twin structures, phase stability, Heusler alloys.
@article{VYURM_2023_15_2_a6,
author = {K. R. Erager and D. R. Baygutlin and V. V. Sokolovskiy and V. D. Buchelnikov},
title = {Peculiarities of nanotwin structures in {Ni}$_2${Mn}$_{1,5}${In}$_{0,5}$ and {Ni}$_2${Mn}$_{1,75}${In}$_{0,25}$ {Heusler} alloys},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {48--58},
year = {2023},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a6/}
}
TY - JOUR
AU - K. R. Erager
AU - D. R. Baygutlin
AU - V. V. Sokolovskiy
AU - V. D. Buchelnikov
TI - Peculiarities of nanotwin structures in Ni$_2$Mn$_{1,5}$In$_{0,5}$ and Ni$_2$Mn$_{1,75}$In$_{0,25}$ Heusler alloys
JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY - 2023
SP - 48
EP - 58
VL - 15
IS - 2
UR - http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a6/
LA - ru
ID - VYURM_2023_15_2_a6
ER -
%0 Journal Article
%A K. R. Erager
%A D. R. Baygutlin
%A V. V. Sokolovskiy
%A V. D. Buchelnikov
%T Peculiarities of nanotwin structures in Ni$_2$Mn$_{1,5}$In$_{0,5}$ and Ni$_2$Mn$_{1,75}$In$_{0,25}$ Heusler alloys
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2023
%P 48-58
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a6/
%G ru
%F VYURM_2023_15_2_a6
K. R. Erager; D. R. Baygutlin; V. V. Sokolovskiy; V. D. Buchelnikov. Peculiarities of nanotwin structures in Ni$_2$Mn$_{1,5}$In$_{0,5}$ and Ni$_2$Mn$_{1,75}$In$_{0,25}$ Heusler alloys. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 2, pp. 48-58. http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a6/
[1] T. Krenke, E. Duman, M. Acet et al., “Inverse Magnetocaloric Effect in Ferromagnetic Ni-Mn-Sn Alloys”, Nat. Mater, 4 (2005), 450 | DOI
[2] P.J. Webster, K.R.A. Ziebeck, S.L. Town, M.S. Peak, “Magnetic Order and Phase Transformation in Ni$_2$MnGa”, Philosophical Magazine B, 49:3 (1984), 295–310 | DOI
[3] Y. Sutou, Y. Imano, N. Koeda et al., “Magnetic and Martensitic Transformations of NiMnX (X=In,Sn,Sb) Ferromagnetic Shape Memory Alloys”, Appl. Phys. Lett, 85:19 (2004), 4358 | DOI
[4] T. Krenke, M. Acet, E.F. Wassermann et al., “Martensitic Transitions and the Nature of Ferromagnetism in the Austenitic and Martensitic States of Ni-Mn-Sn Alloys”, Phys. Rev. B, 72:1 (2005), 014412 | DOI
[5] T. Krenke, M. Acet, E.F. Wassermann et al., “Ferromagnetism in the Austenitic and Martensitic States of Ni-Mn-In alloys”, Phys. Rev. B, 73:17 (2006), 174413 | DOI
[6] T. Krenke, E. Duman, M. Acet et al., “Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In”, Phys. Rev. B, 75:10 (2007), 104414 | DOI
[7] R. Kainuma, Y. Imano, W. Ito et al., “Magnetic-Field-Induced Shape Recovery by Reverse Phase Transformation”, Nature, 439 (2006), 957–960 | DOI
[8] T. Krenke, E. Duman, M. Acet, “Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys”, Nat. Mater, 4 (2005), 450 | DOI
[9] X. Moya, L. Ma?osa, A. Planes et al., “Cooling and heating by adiabatic magnetization in the Ni$_{50}$Mn$_{34}$In$_{16}$ magnetic shape-memory alloy”, Phys. Rev. B, 75:18 (2007), 184412 | DOI
[10] S. Chatterjee, S. Giri, S. Majumdar, S.K. De, “Giant magnetoresistance and large inverse magnetocaloric effect in Ni$_2$Mn$_{1.36}$Sn$_{0.64}$ alloy”, Journal of Physics D: Applied Physics, 42 (2009), 065001 | DOI
[11] M. Khan, I. Dubenko, S. Stadler, N. Ali, “Exchange Bias Behavior in Ni-Mn-Sb Heusler Alloys”, Appl. Phys. Lett, 91:7 (2007), 072510 | DOI
[12] W. Ito, K. Ito, R.Y. Umetsu et al., “Kinetic Arrest of Martensitic Transformation in the NiCoMnIn Metamagnetic Shape Memory Alloy”, Appl. Phys. Lett., 92:2 (2008), 021908 | DOI
[13] V.K. Sharma, M.K. Chattopadhyay, S. Roy, “Sharma, V.K. Kinetic Arrest of the First Order Austenite to Martensite Phase Transition in Ni$_{50}$Mn$_{34}$In$_{16}$: dc Magnetization Studies B”, Phys. Rev.B, 76:14 (2007), 140401(R) | DOI
[14] E. Kren, E. Nagy, L. Pal, P. Szabo, “Structures and Phase Transformations in the Mn-Ni System Near Equiatomic Concentration”, J. Phys. Chem. Sol, 29 (1968), 101–108 | DOI
[15] A. Planes, L. Mañosa, M. Acet, “Planes, A. Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys”, J.Phys.: Condens Matter, 21:23 (2009), 233201 | DOI
[16] S. Aksoy, T. Krenke, M. Acet et al., “Tailoring Magnetic and Magnetocaloric Properties of Martensitic Transitions in Ferromagnetic Heusler Alloys”, Appl. Phys. Lett., 91:24 (2007), 241916 | DOI
[17] M. Siewert, M.E. Gruner, A. Hucht et al., “A First-Principles Investigation of the Compositional Dependent Properties of Magnetic Shape Memory Heusler Alloys”, Adv. Eng. Mater., 2012, no. 8, 530 | DOI
[18] P. Entel, M.E. Gruner, D. Comtesse, M. Wuttig, “Interaction of Phase Transformation and Magnetic Properties of Heusler Alloys: A Density Functional Theory Study”, JOM, 65 (2013), 1540 | DOI
[19] L. Righi, F. Albertini, L. Pareti et al., “Commensurate and incommensurate “5M” modulated crystal structures in Ni-Mn-Ga martensitic phases”, Acta Mater., 55:15 (2007), 5237 | DOI
[20] L. Righi, F. Albertini, E. Villa et al., “Crystal structure of 7M modulated Ni-Mn-Ga martensitic phase”, Acta Mater, 56:16 (2008), 4529 | DOI
[21] M. Schubert, H. Schaefer, J. Mayer et al., “Collective Modes and Structural Modulation in Ni-Mn-Ga(Co) Martensite Thin Films Probed by Femtosecond Spectroscopy and Scanning Tunneling Microscopy”, Phys. Rev. Lett., 115:7 (2015), 076402 | DOI
[22] B. Dutta, A. Çakir, C. Giacobbe et al., “Ab initio Prediction of Martensitic and Intermartensitic Phase Boundaries in Ni-Mn-Ga”, Phys. Rev. Lett, 116:2 (2016), 025503 | DOI
[23] P. Devi, S. Singh, B. Dutta et al., “Adaptive Modulation in Ni2Mn1.4In0.6 Magnetic Shape Memory Heusler Alloy”, Phys. Rev. B, 97:22 (2018), 224102 | DOI
[24] O. Heczko, P. Cejpek, J. Drahokoupil, V. Holy, “Structure and Microstructure of Ni-Mn-Ga Single Crystal Exhibiting Magnetic Shape Memory Effect Analysed by High Resolution X-ray Diffraction”, Acta Mater, 115 (2016), 250–258 | DOI
[25] Y. Lee, J.Y. Rhee, B.N. Harmon, “Generalized susceptibility of the magnetic shape-memory alloy Ni$_2$MnGa”, Phys. Rev. B, 66:5 (2002), 054424 | DOI
[26] C. Bungaro, K.M. Rabe, A. Dal Corso, “First-Principles Study of Lattice Instabilities in Ferromagnetic Ni$_2$MnGa”, Phys. Rev. B, 68:13 (2003), 134104 | DOI
[27] R. Niemann, U.K. R??ler, M.E. Gruner et al., “The Role of Adaptive Martensite in Magnetic Shape Memory Alloys”, Adv. Eng. Mater, 14:8 (2012), 562–581 | DOI
[28] A.G. Khachaturyan, S.M. Shapiro, S. Semenovskaya, “Adaptive phase formation in martensitic transformation”, Phys. Rev. B, 43:13 (1991), 10832 | DOI
[29] S. Kaufmann, R. Niemann, T. Thersleff et al., “Modulated Martensite: Why it Forms and Why it Deforms Easily”, New J. of Phys, 13 (2011), 053029 | DOI
[30] P. Müllner, A.H. King, “Deformation of Hierarchically Twinned Martensite”, Acta Mater, 58:16 (2010), 5242 | DOI
[31] S. Kaufmann, U.K. R??ler, O. Heczko et al., “Adaptive Modulations of Martensites”, Phys. Rev. Lett, 104:14 (2010), 145702 | DOI
[32] M.E. Gruner, R. Niemann, P. Entel et al., “Modulations in Martensitic Heusler Alloys Originate from Nanotwin Ordering”, Sci. rep, 8 (2018), 1–12 | DOI
[33] G. Kresse, J. Furthm?ller, “Efficient Iterative Schemes for ab initio Total-Energy Calculations using a Plane-Wave Basis Set”, Phys. Rev. B, 54:16 (1996), 11169 | DOI
[34] G. Kresse, D. Joubert, “From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method”, Phys. Rev. B, 59 (1999), 1758 | DOI
[35] J.P. Perdew, K. Burke, M. Ernzerhof, “Generalized Gradient Approximation Made Simple”, Phys. Rev. B, 77:18 (1996), 3865 | DOI
[36] A. van de Walle, M. Asta, G. Ceder, The Alloy-Theoretic Automated Toolkit: A User Guide, Tech. Rep., Brown University, Providence, RI, 2019 https://www.brown.edu/Departments/Engineering/Labs/avdw/atat/manual.pdf
[37] A. Jain, S.P. Ong, G. Hautier et al., “Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation”, APL Mater, 1:1 (2013), 011002 | DOI