Peculiarities of nanotwin structures in Ni$_2$Mn$_{1,5}$In$_{0,5}$ and Ni$_2$Mn$_{1,75}$In$_{0,25}$ Heusler alloys
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 2, pp. 48-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article presents the results of calculating the phase stability and structural properties of the twin structures of Ni$_2$Mn$_{1,5}$In$_{0,5}$ and Ni$_2$Mn$_{1,75}$In$_{0,25}$ Heusler alloys. The structures with a random and periodic arrangement of Mn-excess atoms in the In sublattice were considered. It is shown that the compositions of Ni$_2$Mn$_{1,5}$In$_{0,5}$ and Ni$_2$Mn$_{1,75}$In$_{0,25}$, with modulation periods of 2–5 and 3–3, respectively, are stable relative to all twin structures. The distribution of Mn-excess atoms does not affect the structural characteristics of the systems. The nanotwin structures of Ni$_2$Mn$_{1,5}$In$_{0,5}$ and Ni$_2$Mn$_{1,75}$In$_{0,25}$ alloys possess similar crystal lattice parameters. An increase in the stability of the structures with respect to the decomposition into constituent stable components is observed with an increase in the concentration of Mn.
Mots-clés : ab initio calculations
Keywords: twin structures, phase stability, Heusler alloys.
@article{VYURM_2023_15_2_a6,
     author = {K. R. Erager and D. R. Baygutlin and V. V. Sokolovskiy and V. D. Buchelnikov},
     title = {Peculiarities of nanotwin structures in {Ni}$_2${Mn}$_{1,5}${In}$_{0,5}$ and {Ni}$_2${Mn}$_{1,75}${In}$_{0,25}$ {Heusler} alloys},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {48--58},
     year = {2023},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a6/}
}
TY  - JOUR
AU  - K. R. Erager
AU  - D. R. Baygutlin
AU  - V. V. Sokolovskiy
AU  - V. D. Buchelnikov
TI  - Peculiarities of nanotwin structures in Ni$_2$Mn$_{1,5}$In$_{0,5}$ and Ni$_2$Mn$_{1,75}$In$_{0,25}$ Heusler alloys
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2023
SP  - 48
EP  - 58
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a6/
LA  - ru
ID  - VYURM_2023_15_2_a6
ER  - 
%0 Journal Article
%A K. R. Erager
%A D. R. Baygutlin
%A V. V. Sokolovskiy
%A V. D. Buchelnikov
%T Peculiarities of nanotwin structures in Ni$_2$Mn$_{1,5}$In$_{0,5}$ and Ni$_2$Mn$_{1,75}$In$_{0,25}$ Heusler alloys
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2023
%P 48-58
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a6/
%G ru
%F VYURM_2023_15_2_a6
K. R. Erager; D. R. Baygutlin; V. V. Sokolovskiy; V. D. Buchelnikov. Peculiarities of nanotwin structures in Ni$_2$Mn$_{1,5}$In$_{0,5}$ and Ni$_2$Mn$_{1,75}$In$_{0,25}$ Heusler alloys. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 2, pp. 48-58. http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a6/

[1] T. Krenke, E. Duman, M. Acet et al., “Inverse Magnetocaloric Effect in Ferromagnetic Ni-Mn-Sn Alloys”, Nat. Mater, 4 (2005), 450 | DOI

[2] P.J. Webster, K.R.A. Ziebeck, S.L. Town, M.S. Peak, “Magnetic Order and Phase Transformation in Ni$_2$MnGa”, Philosophical Magazine B, 49:3 (1984), 295–310 | DOI

[3] Y. Sutou, Y. Imano, N. Koeda et al., “Magnetic and Martensitic Transformations of NiMnX (X=In,Sn,Sb) Ferromagnetic Shape Memory Alloys”, Appl. Phys. Lett, 85:19 (2004), 4358 | DOI

[4] T. Krenke, M. Acet, E.F. Wassermann et al., “Martensitic Transitions and the Nature of Ferromagnetism in the Austenitic and Martensitic States of Ni-Mn-Sn Alloys”, Phys. Rev. B, 72:1 (2005), 014412 | DOI

[5] T. Krenke, M. Acet, E.F. Wassermann et al., “Ferromagnetism in the Austenitic and Martensitic States of Ni-Mn-In alloys”, Phys. Rev. B, 73:17 (2006), 174413 | DOI

[6] T. Krenke, E. Duman, M. Acet et al., “Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In”, Phys. Rev. B, 75:10 (2007), 104414 | DOI

[7] R. Kainuma, Y. Imano, W. Ito et al., “Magnetic-Field-Induced Shape Recovery by Reverse Phase Transformation”, Nature, 439 (2006), 957–960 | DOI

[8] T. Krenke, E. Duman, M. Acet, “Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys”, Nat. Mater, 4 (2005), 450 | DOI

[9] X. Moya, L. Ma?osa, A. Planes et al., “Cooling and heating by adiabatic magnetization in the Ni$_{50}$Mn$_{34}$In$_{16}$ magnetic shape-memory alloy”, Phys. Rev. B, 75:18 (2007), 184412 | DOI

[10] S. Chatterjee, S. Giri, S. Majumdar, S.K. De, “Giant magnetoresistance and large inverse magnetocaloric effect in Ni$_2$Mn$_{1.36}$Sn$_{0.64}$ alloy”, Journal of Physics D: Applied Physics, 42 (2009), 065001 | DOI

[11] M. Khan, I. Dubenko, S. Stadler, N. Ali, “Exchange Bias Behavior in Ni-Mn-Sb Heusler Alloys”, Appl. Phys. Lett, 91:7 (2007), 072510 | DOI

[12] W. Ito, K. Ito, R.Y. Umetsu et al., “Kinetic Arrest of Martensitic Transformation in the NiCoMnIn Metamagnetic Shape Memory Alloy”, Appl. Phys. Lett., 92:2 (2008), 021908 | DOI

[13] V.K. Sharma, M.K. Chattopadhyay, S. Roy, “Sharma, V.K. Kinetic Arrest of the First Order Austenite to Martensite Phase Transition in Ni$_{50}$Mn$_{34}$In$_{16}$: dc Magnetization Studies B”, Phys. Rev.B, 76:14 (2007), 140401(R) | DOI

[14] E. Kren, E. Nagy, L. Pal, P. Szabo, “Structures and Phase Transformations in the Mn-Ni System Near Equiatomic Concentration”, J. Phys. Chem. Sol, 29 (1968), 101–108 | DOI

[15] A. Planes, L. Mañosa, M. Acet, “Planes, A. Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys”, J.Phys.: Condens Matter, 21:23 (2009), 233201 | DOI

[16] S. Aksoy, T. Krenke, M. Acet et al., “Tailoring Magnetic and Magnetocaloric Properties of Martensitic Transitions in Ferromagnetic Heusler Alloys”, Appl. Phys. Lett., 91:24 (2007), 241916 | DOI

[17] M. Siewert, M.E. Gruner, A. Hucht et al., “A First-Principles Investigation of the Compositional Dependent Properties of Magnetic Shape Memory Heusler Alloys”, Adv. Eng. Mater., 2012, no. 8, 530 | DOI

[18] P. Entel, M.E. Gruner, D. Comtesse, M. Wuttig, “Interaction of Phase Transformation and Magnetic Properties of Heusler Alloys: A Density Functional Theory Study”, JOM, 65 (2013), 1540 | DOI

[19] L. Righi, F. Albertini, L. Pareti et al., “Commensurate and incommensurate “5M” modulated crystal structures in Ni-Mn-Ga martensitic phases”, Acta Mater., 55:15 (2007), 5237 | DOI

[20] L. Righi, F. Albertini, E. Villa et al., “Crystal structure of 7M modulated Ni-Mn-Ga martensitic phase”, Acta Mater, 56:16 (2008), 4529 | DOI

[21] M. Schubert, H. Schaefer, J. Mayer et al., “Collective Modes and Structural Modulation in Ni-Mn-Ga(Co) Martensite Thin Films Probed by Femtosecond Spectroscopy and Scanning Tunneling Microscopy”, Phys. Rev. Lett., 115:7 (2015), 076402 | DOI

[22] B. Dutta, A. Çakir, C. Giacobbe et al., “Ab initio Prediction of Martensitic and Intermartensitic Phase Boundaries in Ni-Mn-Ga”, Phys. Rev. Lett, 116:2 (2016), 025503 | DOI

[23] P. Devi, S. Singh, B. Dutta et al., “Adaptive Modulation in Ni2Mn1.4In0.6 Magnetic Shape Memory Heusler Alloy”, Phys. Rev. B, 97:22 (2018), 224102 | DOI

[24] O. Heczko, P. Cejpek, J. Drahokoupil, V. Holy, “Structure and Microstructure of Ni-Mn-Ga Single Crystal Exhibiting Magnetic Shape Memory Effect Analysed by High Resolution X-ray Diffraction”, Acta Mater, 115 (2016), 250–258 | DOI

[25] Y. Lee, J.Y. Rhee, B.N. Harmon, “Generalized susceptibility of the magnetic shape-memory alloy Ni$_2$MnGa”, Phys. Rev. B, 66:5 (2002), 054424 | DOI

[26] C. Bungaro, K.M. Rabe, A. Dal Corso, “First-Principles Study of Lattice Instabilities in Ferromagnetic Ni$_2$MnGa”, Phys. Rev. B, 68:13 (2003), 134104 | DOI

[27] R. Niemann, U.K. R??ler, M.E. Gruner et al., “The Role of Adaptive Martensite in Magnetic Shape Memory Alloys”, Adv. Eng. Mater, 14:8 (2012), 562–581 | DOI

[28] A.G. Khachaturyan, S.M. Shapiro, S. Semenovskaya, “Adaptive phase formation in martensitic transformation”, Phys. Rev. B, 43:13 (1991), 10832 | DOI

[29] S. Kaufmann, R. Niemann, T. Thersleff et al., “Modulated Martensite: Why it Forms and Why it Deforms Easily”, New J. of Phys, 13 (2011), 053029 | DOI

[30] P. Müllner, A.H. King, “Deformation of Hierarchically Twinned Martensite”, Acta Mater, 58:16 (2010), 5242 | DOI

[31] S. Kaufmann, U.K. R??ler, O. Heczko et al., “Adaptive Modulations of Martensites”, Phys. Rev. Lett, 104:14 (2010), 145702 | DOI

[32] M.E. Gruner, R. Niemann, P. Entel et al., “Modulations in Martensitic Heusler Alloys Originate from Nanotwin Ordering”, Sci. rep, 8 (2018), 1–12 | DOI

[33] G. Kresse, J. Furthm?ller, “Efficient Iterative Schemes for ab initio Total-Energy Calculations using a Plane-Wave Basis Set”, Phys. Rev. B, 54:16 (1996), 11169 | DOI

[34] G. Kresse, D. Joubert, “From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method”, Phys. Rev. B, 59 (1999), 1758 | DOI

[35] J.P. Perdew, K. Burke, M. Ernzerhof, “Generalized Gradient Approximation Made Simple”, Phys. Rev. B, 77:18 (1996), 3865 | DOI

[36] A. van de Walle, M. Asta, G. Ceder, The Alloy-Theoretic Automated Toolkit: A User Guide, Tech. Rep., Brown University, Providence, RI, 2019 https://www.brown.edu/Departments/Engineering/Labs/avdw/atat/manual.pdf

[37] A. Jain, S.P. Ong, G. Hautier et al., “Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation”, APL Mater, 1:1 (2013), 011002 | DOI