Spaces of differential forms with stochastic complex-valued coefficients
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 2, pp. 21-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article investigates the construction of spaces of differential forms with coefficients which are stochastic complex-valued K-processes. A complete probability space and complex-valued random variables on measurable subsets of this space are considered, and continuous random complex-valued K-processes are also introduced. Next, we construct spaces of differential forms with coefficients in the form of such stochastic complex-valued K-processes.
Keywords: complex-valued random variables, complex-valued stochastic processes, stochastic K-processes, differential forms.
@article{VYURM_2023_15_2_a2,
     author = {M. A. Sagadeeva and D. E. Shafranov},
     title = {Spaces of differential forms with stochastic complex-valued coefficients},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {21--25},
     year = {2023},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a2/}
}
TY  - JOUR
AU  - M. A. Sagadeeva
AU  - D. E. Shafranov
TI  - Spaces of differential forms with stochastic complex-valued coefficients
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2023
SP  - 21
EP  - 25
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a2/
LA  - ru
ID  - VYURM_2023_15_2_a2
ER  - 
%0 Journal Article
%A M. A. Sagadeeva
%A D. E. Shafranov
%T Spaces of differential forms with stochastic complex-valued coefficients
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2023
%P 21-25
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a2/
%G ru
%F VYURM_2023_15_2_a2
M. A. Sagadeeva; D. E. Shafranov. Spaces of differential forms with stochastic complex-valued coefficients. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 2, pp. 21-25. http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a2/

[1] Sviridyuk G.A., “On the General Theory of Operator Semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl

[2] Sviridyuk G.A., Manakova N.A., “The Dynamical Models of Sobolev Type with Showalter-Sidorov Condition and Additive “Noise””, Bulletin of the South Ural State University. Series “Mathematical Modelling, Programming and Computer Software”, 7:1 (2014), 90–103 (in Russ.) | DOI | Zbl

[3] A. Favini, G.A. Sviridyuk, M. Sagadeeva, “Favini, A. Linear Sobolev Type Equations with Relatively P-Radial Operators in Space of «Noises»”, Mediterranean Journal of Mathematics, 13:6 (2016), 4607–4621 | DOI | MR | Zbl

[4] D.E. Shafranov, O.G. Kitaeva, “The Barenblatt-Zheltov-Kochina Model with the Showalter-Sidorov Condition and Additive “White Noise” in Spaces of Differential Forms on Riemannian Manifolds without Boundary”, Global and Stochastic Analysis, 5:2 (2018), 145–159

[5] D.E. Shafranov, G.A. Sviridyuk, “Degenerate Holomorphic Semigroups of Operators in Spaces of K-“Noises” on Riemannian Manifolds”, Semigroups of Operators: Theory and Applications, SOTA-2018, Springer Proceedings in Mathematics and Statistics, Springer, Cham, 2020, 279–292 | DOI | MR | Zbl

[6] Yu.E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London–Dordrecht–Heidelberg–N.Y., 2011, 436 pp. | MR | Zbl