@article{VYURM_2023_15_2_a2,
author = {M. A. Sagadeeva and D. E. Shafranov},
title = {Spaces of differential forms with stochastic complex-valued coefficients},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {21--25},
year = {2023},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a2/}
}
TY - JOUR AU - M. A. Sagadeeva AU - D. E. Shafranov TI - Spaces of differential forms with stochastic complex-valued coefficients JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2023 SP - 21 EP - 25 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a2/ LA - ru ID - VYURM_2023_15_2_a2 ER -
%0 Journal Article %A M. A. Sagadeeva %A D. E. Shafranov %T Spaces of differential forms with stochastic complex-valued coefficients %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2023 %P 21-25 %V 15 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a2/ %G ru %F VYURM_2023_15_2_a2
M. A. Sagadeeva; D. E. Shafranov. Spaces of differential forms with stochastic complex-valued coefficients. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 2, pp. 21-25. http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a2/
[1] Sviridyuk G.A., “On the General Theory of Operator Semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45–74 | DOI | MR | Zbl
[2] Sviridyuk G.A., Manakova N.A., “The Dynamical Models of Sobolev Type with Showalter-Sidorov Condition and Additive “Noise””, Bulletin of the South Ural State University. Series “Mathematical Modelling, Programming and Computer Software”, 7:1 (2014), 90–103 (in Russ.) | DOI | Zbl
[3] A. Favini, G.A. Sviridyuk, M. Sagadeeva, “Favini, A. Linear Sobolev Type Equations with Relatively P-Radial Operators in Space of «Noises»”, Mediterranean Journal of Mathematics, 13:6 (2016), 4607–4621 | DOI | MR | Zbl
[4] D.E. Shafranov, O.G. Kitaeva, “The Barenblatt-Zheltov-Kochina Model with the Showalter-Sidorov Condition and Additive “White Noise” in Spaces of Differential Forms on Riemannian Manifolds without Boundary”, Global and Stochastic Analysis, 5:2 (2018), 145–159
[5] D.E. Shafranov, G.A. Sviridyuk, “Degenerate Holomorphic Semigroups of Operators in Spaces of K-“Noises” on Riemannian Manifolds”, Semigroups of Operators: Theory and Applications, SOTA-2018, Springer Proceedings in Mathematics and Statistics, Springer, Cham, 2020, 279–292 | DOI | MR | Zbl
[6] Yu.E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London–Dordrecht–Heidelberg–N.Y., 2011, 436 pp. | MR | Zbl