Mots-clés : Sobolev type equations.
@article{VYURM_2023_15_2_a1,
author = {K. V. Perevozchikova},
title = {The analysis and processing of information for one stochastic system of the {Sobolev} type},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {14--20},
year = {2023},
volume = {15},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a1/}
}
TY - JOUR AU - K. V. Perevozchikova TI - The analysis and processing of information for one stochastic system of the Sobolev type JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2023 SP - 14 EP - 20 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a1/ LA - en ID - VYURM_2023_15_2_a1 ER -
%0 Journal Article %A K. V. Perevozchikova %T The analysis and processing of information for one stochastic system of the Sobolev type %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2023 %P 14-20 %V 15 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a1/ %G en %F VYURM_2023_15_2_a1
K. V. Perevozchikova. The analysis and processing of information for one stochastic system of the Sobolev type. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 2, pp. 14-20. http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a1/
[1] Da Prato G., Zabczyk J., Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992 | DOI | MR | Zbl
[2] Kovacs M., Larsson S., “Introduction to Stochastic Partial Differential Equations”, Proc. New Directions in the Mathematical and Computer Sciences (National Universities Commission, Abuja, Nigeria, October 8-12, 2007), Publications of the ICMCS, 4, 2008, 2008, 159–232 | Zbl
[3] Zamyshlyaeva A.A., “Stochastic Incomplete Linear Sobolev Type High-Ordered Equations with Additive White Noise”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 40(299):14 (2012), 73–82 | MR | Zbl
[4] Gliklikh Yu.E., Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, N.Y.–London–Dordrecht–Heidelberg, 2011, 436 pp. | DOI | MR | Zbl
[5] Nelson E., Dynamical Theories of Brownian Motion, Princeton University Press, 1967, 142 pp. | MR | Zbl
[6] Shestakov A.L., Sviridyuk G.A., “On the Measurement of the “White Noise””, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 27(286):13 (2012), 99–108 (in Russ.) | Zbl
[7] Shestakov A.L., Sviridyuk G.A., “Optimal Measurement of Dynamically Distorted Signals”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 17(234):5 (2011), 70–75 (in Russ.) | Zbl
[8] Shestakov A.L., Sviridyuk G.A., Hudyakov Yu.V., “Dynamic Measurement in Spaces of “Noise””, Bulletin of the South Ural State University. Series: Computer Technologies, Automatic Control, Radio Electronics, 13:2 (2013), 4–11 (in Russ.)
[9] Favini A., Sviridyuk G.A., Zamyshlyaeva A.A., “One Class of Sobolev Type Equations of Higher Order with Additive “White Noise””, Communications on Pure and Applied Analysis, 15:1 (2016), 185–196 | DOI | MR | Zbl
[10] Favini A., Zagrebina S.A., Sviridyuk G.A., “Multipoint Initial-Final Value Problems for Dynamical Sobolev-Type Equations in the Space of Noises”, Electronic Journal of Differential Equations, 2018:128 (2018), 1–10 | MR
[11] Korpusov M.O., Sveshnikov A.G., “Three-Dimensional Nonlinear Evolution Equations of Pseudoparabolic Type in Problems of Mathematical Physics”, Comput. Math. Math. Phys., 43: 12 (2003), 1765–1797 | MR | Zbl
[12] Manakova N.A., Vasiuchkova K.V., “Research of One Mathematical Model of the Distribution of Potentials in a Crystalline Semiconductor”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 12:2 (2019), 150–157 (in Russ.) | Zbl
[13] Perevochikova K.V., Manakova N.A., Gavrilova O.V., Manakov I.M., “Nonlinear Filtration Mathematical Model with a Random Showalter-Sidorov Initial Condition”, Journal of Computational and Engineering Mathematics, 9:2 (2022), 39–51 | DOI