Keywords: integral load, linearization.
@article{VYURM_2023_15_2_a0,
author = {O. L. Boziev},
title = {A priori estimates for derivative solutions of one-dimensional inhomogeneous heat conduction equations with an integral load in the main part},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {5--13},
year = {2023},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a0/}
}
TY - JOUR AU - O. L. Boziev TI - A priori estimates for derivative solutions of one-dimensional inhomogeneous heat conduction equations with an integral load in the main part JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2023 SP - 5 EP - 13 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a0/ LA - ru ID - VYURM_2023_15_2_a0 ER -
%0 Journal Article %A O. L. Boziev %T A priori estimates for derivative solutions of one-dimensional inhomogeneous heat conduction equations with an integral load in the main part %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2023 %P 5-13 %V 15 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a0/ %G ru %F VYURM_2023_15_2_a0
O. L. Boziev. A priori estimates for derivative solutions of one-dimensional inhomogeneous heat conduction equations with an integral load in the main part. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 2, pp. 5-13. http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a0/
[1] Bernstein S.N., “Sur Une Classe D'equations Fonctionnelles aux Derivees Partielles”, Izvestiya Akademii nauk SSSR. Seriya matematicheskaya, 4:1 (1940), 17–26 (in Russ.) | Zbl
[2] Jangveladze T.A., “A Nonlinear Integro-Differential Equation of Parabolic Type”, Differ. Uravn., 21:1 (1985), 41–46 (in Russ.) | MR | Zbl
[3] Laptev G.I., “Second-Order Quasilinear Parabolic Equations with Integral Coefficients”, Dokl. Akad. nauk SSSR, 293:2 (1987), 306–309 (in Russ.) | MR | Zbl
[4] L. Dawidowski, “The Quasilinear Parabolic Kirchhoff Equation”, Open Math., 15:1 (2017), 382–392 | DOI | MR | Zbl
[5] T. Matsuyama, M. Ruzhansky, On the Gevrey Well-Posedness of the Kirchhoff Equation, arXiv: 1508.05305 [math.AP]
[6] D.H.Q. Nam, D. Dalenu, N.H. Luc, N.H. Can, “On a Kirchhoff Diffusion Equation with Integral Condition”, Advances in Difference Equations, 2020, 617 | DOI | MR | Zbl
[7] Kalashnikov A.S., “Some Problems of the Qualitative Theory of Non-Linear Degenerate Second-Order Parabolic Equations”, Russian Mathematical Surveys, 42:2 (1987), 169–222 | DOI | MR | Zbl
[8] Q. Xulong, Z. Xu, Zh. Wenshu, “Boundary Layer Study of a Nonlinear Parabolic Equation with a Small Parameter”, Mathematical methods in the applied Sciences, 45:7 (2021), 3393–3400 | DOI | MR
[9] M. Yaman, Z. Misir, “Finite-Time Behaviour of Solutions to Nonlinear Parabolic Equation”, New Trends in Mathematical Sciences, 10:4 (2022), 47–53 | DOI
[10] A. Alshehri, N. Aljaber, H. Altamimi, M. Majdoub, On the Fujita exponent for a nonlinear parabolic equation with a forcing term, 2022, arXiv: 2206.04930
[11] L. Boccardo, T. Gallouet, J.L. Vazquez, “Boccardo, L. Solutions of Nonlinear Parabolic Equations without Growth Restrictions on the Data”, Electronic Journal of Differential Equations, 2001, no. 60, 1–20 https://ejde.math.txstate.edu/Volumes/2001/60/boccardo.pdf
[12] Boziev O.L., “On One Method of Approximate Solution of a Parabolic Equation with an Integral Load”, Mathematical bulletin of Vyatka State University, 2021, no. 2 (21), 9–12 (in Russ.) | DOI
[13] Boziev O.L., “On an Approximate Method for Solving Loaded Equations of Hyperbolic and Parabolic types”, News of the Kabardino-Balkarian Scientific Center of RAS, 2021, no. 2(100), 5–10 | DOI
[14] Boziev O.L., “A Method for an Approximate Solution to a Parabolic Equation with a Power-Law Nonlinearity”, Bulletin MSRU. Series: Physics and Mathematics, 2021, no. 3, 18–28 (in Russ.) | DOI
[15] Bosiev O.L., “On the Linearization of Parabolic Equations with Integral Load in the Main Part by a Priori Estimation of Their Solutions”, Mathematical bulletin of Vyatka State University, 2022, no. 2 (25), 4–8 (in Russ.) | DOI
[16] Filatov A.N., Sharova L.V., Integral Inequality and Theory of Nonlinear Oscillations, Nauka Publ, M., 1976, 152 pp. (in Russ.)