A priori estimates for derivative solutions of one-dimensional inhomogeneous heat conduction equations with an integral load in the main part
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 2, pp. 5-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article considers the second initial-boundary value problem with homogeneous boundary conditions for a one-dimensional modified heat equation. The modification consists in replacing the temperature-conductivity coefficient with an integral load. In our case, it has the form of a power function of the integral of the square of the modulus of the derivative of the solution of the equation with respect to the spatial variable. Equations with such a load are associated with some practically important parabolic equations with a power nonlinearity in the main part. This makes it possible to use previously found solutions of loaded problems to start the successive approximation to solutions of the nonlinear problems reduced to them. In this case, with respect to the original nonlinear equation, the loaded equation contains a weakened nonlinearity. Linearization of the loaded equation makes it possible to find its approximate solution. The article considers three cases of integral load: the square of the norm of the derivative of the solution with respect to x in the space L2 in natural, inverse to natural, and integer negative powers. The corresponding a priori inequalities are established. Their right sides are used to pass to linearized equations. Examples of linearization of heat conduction equations with an integral load in the main part are given.
Mots-clés : parabolic equation, a priori estimation
Keywords: integral load, linearization.
@article{VYURM_2023_15_2_a0,
     author = {O. L. Boziev},
     title = {A priori estimates for derivative solutions of one-dimensional inhomogeneous heat conduction equations with an integral load in the main part},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {5--13},
     year = {2023},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a0/}
}
TY  - JOUR
AU  - O. L. Boziev
TI  - A priori estimates for derivative solutions of one-dimensional inhomogeneous heat conduction equations with an integral load in the main part
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2023
SP  - 5
EP  - 13
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a0/
LA  - ru
ID  - VYURM_2023_15_2_a0
ER  - 
%0 Journal Article
%A O. L. Boziev
%T A priori estimates for derivative solutions of one-dimensional inhomogeneous heat conduction equations with an integral load in the main part
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2023
%P 5-13
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a0/
%G ru
%F VYURM_2023_15_2_a0
O. L. Boziev. A priori estimates for derivative solutions of one-dimensional inhomogeneous heat conduction equations with an integral load in the main part. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 2, pp. 5-13. http://geodesic.mathdoc.fr/item/VYURM_2023_15_2_a0/

[1] Bernstein S.N., “Sur Une Classe D'equations Fonctionnelles aux Derivees Partielles”, Izvestiya Akademii nauk SSSR. Seriya matematicheskaya, 4:1 (1940), 17–26 (in Russ.) | Zbl

[2] Jangveladze T.A., “A Nonlinear Integro-Differential Equation of Parabolic Type”, Differ. Uravn., 21:1 (1985), 41–46 (in Russ.) | MR | Zbl

[3] Laptev G.I., “Second-Order Quasilinear Parabolic Equations with Integral Coefficients”, Dokl. Akad. nauk SSSR, 293:2 (1987), 306–309 (in Russ.) | MR | Zbl

[4] L. Dawidowski, “The Quasilinear Parabolic Kirchhoff Equation”, Open Math., 15:1 (2017), 382–392 | DOI | MR | Zbl

[5] T. Matsuyama, M. Ruzhansky, On the Gevrey Well-Posedness of the Kirchhoff Equation, arXiv: 1508.05305 [math.AP]

[6] D.H.Q. Nam, D. Dalenu, N.H. Luc, N.H. Can, “On a Kirchhoff Diffusion Equation with Integral Condition”, Advances in Difference Equations, 2020, 617 | DOI | MR | Zbl

[7] Kalashnikov A.S., “Some Problems of the Qualitative Theory of Non-Linear Degenerate Second-Order Parabolic Equations”, Russian Mathematical Surveys, 42:2 (1987), 169–222 | DOI | MR | Zbl

[8] Q. Xulong, Z. Xu, Zh. Wenshu, “Boundary Layer Study of a Nonlinear Parabolic Equation with a Small Parameter”, Mathematical methods in the applied Sciences, 45:7 (2021), 3393–3400 | DOI | MR

[9] M. Yaman, Z. Misir, “Finite-Time Behaviour of Solutions to Nonlinear Parabolic Equation”, New Trends in Mathematical Sciences, 10:4 (2022), 47–53 | DOI

[10] A. Alshehri, N. Aljaber, H. Altamimi, M. Majdoub, On the Fujita exponent for a nonlinear parabolic equation with a forcing term, 2022, arXiv: 2206.04930

[11] L. Boccardo, T. Gallouet, J.L. Vazquez, “Boccardo, L. Solutions of Nonlinear Parabolic Equations without Growth Restrictions on the Data”, Electronic Journal of Differential Equations, 2001, no. 60, 1–20 https://ejde.math.txstate.edu/Volumes/2001/60/boccardo.pdf

[12] Boziev O.L., “On One Method of Approximate Solution of a Parabolic Equation with an Integral Load”, Mathematical bulletin of Vyatka State University, 2021, no. 2 (21), 9–12 (in Russ.) | DOI

[13] Boziev O.L., “On an Approximate Method for Solving Loaded Equations of Hyperbolic and Parabolic types”, News of the Kabardino-Balkarian Scientific Center of RAS, 2021, no. 2(100), 5–10 | DOI

[14] Boziev O.L., “A Method for an Approximate Solution to a Parabolic Equation with a Power-Law Nonlinearity”, Bulletin MSRU. Series: Physics and Mathematics, 2021, no. 3, 18–28 (in Russ.) | DOI

[15] Bosiev O.L., “On the Linearization of Parabolic Equations with Integral Load in the Main Part by a Priori Estimation of Their Solutions”, Mathematical bulletin of Vyatka State University, 2022, no. 2 (25), 4–8 (in Russ.) | DOI

[16] Filatov A.N., Sharova L.V., Integral Inequality and Theory of Nonlinear Oscillations, Nauka Publ, M., 1976, 152 pp. (in Russ.)