A simple analytical model of thermal fields to develop digital twins in industrial arc welding
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 1, pp. 76-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A digital twin is the virtual representation of a physical object, system, or process using computerized digital technologies. Creating digital twins becomes much more difficult for dynamic manufacturing processes, such as welding, when simulation time should not exceed a few seconds. This paper presents a method for modeling thermal fields in industrial welding in real time, based on physical processes. The method can be used to create a digital twin at the process level. The method uses analytical solutions to the problem of temperature distribution around a weld which is a moving heat source.
Mots-clés : simulation
Keywords: thermal field, weld, digital twin.
@article{VYURM_2023_15_1_a8,
     author = {D. A. Mirzaev and K. Yu. Okishev and A. A. Mirzoev},
     title = {A simple analytical model of thermal fields to develop digital twins in industrial arc welding},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {76--86},
     year = {2023},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a8/}
}
TY  - JOUR
AU  - D. A. Mirzaev
AU  - K. Yu. Okishev
AU  - A. A. Mirzoev
TI  - A simple analytical model of thermal fields to develop digital twins in industrial arc welding
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2023
SP  - 76
EP  - 86
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a8/
LA  - ru
ID  - VYURM_2023_15_1_a8
ER  - 
%0 Journal Article
%A D. A. Mirzaev
%A K. Yu. Okishev
%A A. A. Mirzoev
%T A simple analytical model of thermal fields to develop digital twins in industrial arc welding
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2023
%P 76-86
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a8/
%G ru
%F VYURM_2023_15_1_a8
D. A. Mirzaev; K. Yu. Okishev; A. A. Mirzoev. A simple analytical model of thermal fields to develop digital twins in industrial arc welding. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 1, pp. 76-86. http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a8/

[1] X. Chen, F. Kong, Y. Fu et al., “A Review on Wire-Arc Additive Manufacturing: Typical Defects, Detection Approaches, and Multisensor Data Fusion-Based Model”, The International Journal of Advanced Manufacturing Technology, 117 (2021), 707–727 | DOI

[2] D. Deng, H. Murakawa, “Numerical Simulation of Temperature Field and Residual Stress in Multi-pass Welds in Stainless Steel Pipe and Comparison with Experimental Measurements”, Comput. Mater. Sci., 37:3 (2006), 269–277 | DOI

[3] A. Anca, A. Cardona, J. Risso, V.D. Fachinotti, “Finite Element Modeling of Welding Processes”, Applied Mathematical Modelling, 35:2 (2011), 688–707 | DOI | MR

[4] B. Singh, P. Singhal, K.K. Saxena, R.K. Saxena, “Influences of Latent Heat on Temperature Field, Weld Bead Dimensions and Melting Efficiency during Welding Simulation”, Metals and Materials International, 27 (2021), 2848–2866 | DOI

[5] R.R. Rykalin, “Energy Sources for Welding”, Welding in the World, 12:9/10 (1974), 227–248

[6] V.D. Fachinotti, A.A. Anca, A. Cardona, “Analytical Solutions of the Thermal Field Induced by Moving Double-Ellipsoidal and Double-elliptical Heat Sources in a Semi-infinite Body”, Int. J. Numer. Meth. in Biomedical Eng., 27:4 (2011), 595–607 | DOI | MR

[7] T.F. Flint, J.A. Francis, M.C. Smith, A.N. Vasileiou, “Semi-Analytical Solutions for the Transient Temperature Fields Induced by a Moving Heat Source in an Orthogonal Domain”, International Journal of Thermal Sciences, 123 (2018), 140–150 | DOI

[8] M.B. Nasiri, N. Enzinger, “Powerful Analytical Solution to Heat Flow Problem in Welding”, Int. J. Therm. Sci., 135 (2019), 601–612 | DOI

[9] V.A. Karkhin, S.V. Zharkov, V.G. Mikhaylov, “Calculation of Thermal Processes in Welding Thick Plates with Moving Axisymmetric Heat Sources”, Weld. Int., 30:9 (2016), 708–711 | DOI

[10] R.M. Farias, P.R.F. Teixeira, L.O. Vilarinho, “Variable Profile Heat Source Models for Numerical Simulations of Arc Welding Processes”, International Journal of Thermal Sciences, 179 (2022), 107593 | DOI

[11] A. Chiocca, F. Frendo, L. Bertini, “Evaluation of Heat Sources for the Simulation of the Temperature Distribution in Gas Metal Arc Welded Joints”, Metals, 9:11 (2019), 1142 | DOI

[12] A.M. Popkov, Teplovye i energeticheskie raschety pri elektricheskoi dugovoi svarke, ucheb. posobie, Izd-vo YuUrGU, Chelyabinsk, 2006, 74 pp.

[13] N.N. Rykalin, Raschety teplovykh protsessov pri svarke, ucheb. posobie dlya mashinostroit. vuzov, Mashgiz, M., 1951, 296 pp.

[14] K.V. Bagryanskii, Z.A. Dobrotina, K.K. Khrenov, Teoriya svarochnykh protsessov, uchebnik dlya svarochnykh spetsialnostei vuzov, Vischa shkola, Kiev, 1976, 423 pp.

[15] A. Sharma, A.K. Chaudhary, N. Arora, B.K. Mishra, “Estimation of Heat Source Model Parameters for Twin-Wire Submerged Arc Welding”, The International Journal of Advanced Manufacturing Technology, 45:11-12 (2009), 1096–1103 | DOI