A note on calculating Rayleigh wave velocity and the derivative of the Rayleigh determinant in elastic media
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 1, pp. 69-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

There are many approximate and exact formulae to calculate surface wave velocity in an elastic medium. An analytical expression for Rayleigh wave velocity in volume wave velocity values has been obtained. A formula which determines the remainder in the excitation and diffraction of surface acoustic waves in a homogeneous isotropic elastic half-space involving solutions for the strain and stress fields in the form of quadratures is worked out. The values of the Rayleigh wave velocity and the derivative of the Rayleigh determinant for different media according to the reference data were obtained. The results can help in obtaining analytic expressions and reducing the calculation time of numerical solutions of the diffraction and excitation of acoustic waves.
Keywords: surface waves, Rayleigh wave velocity, roots of the characteristic equation
Mots-clés : exact solution.
@article{VYURM_2023_15_1_a7,
     author = {S. Yu. Gurevich and E. V. Golubev},
     title = {A note on calculating {Rayleigh} wave velocity and the derivative of the {Rayleigh} determinant in elastic media},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {69--75},
     year = {2023},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a7/}
}
TY  - JOUR
AU  - S. Yu. Gurevich
AU  - E. V. Golubev
TI  - A note on calculating Rayleigh wave velocity and the derivative of the Rayleigh determinant in elastic media
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2023
SP  - 69
EP  - 75
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a7/
LA  - ru
ID  - VYURM_2023_15_1_a7
ER  - 
%0 Journal Article
%A S. Yu. Gurevich
%A E. V. Golubev
%T A note on calculating Rayleigh wave velocity and the derivative of the Rayleigh determinant in elastic media
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2023
%P 69-75
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a7/
%G ru
%F VYURM_2023_15_1_a7
S. Yu. Gurevich; E. V. Golubev. A note on calculating Rayleigh wave velocity and the derivative of the Rayleigh determinant in elastic media. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 1, pp. 69-75. http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a7/

[1] L. Rayleigh, “On Waves Propagated along the Plane Surface of an Elastic Solid”, Proceedings of the London Mathematical Society, s1-17:1 (1885), 4–11 | DOI | MR

[2] Yu.V. Gulyaev, V.P. Plesskii, “Rasprostranenie poverkhnostnykh akusticheskikh voln v periodicheskikh strukturakh”, Uspekhi fizicheskikh nauk, 157:1 (1989), 85–127 | DOI

[3] A.A. Karabutov, “Lazernoe vozbuzhdenie poverkhnostnykh akusticheskikh voln: novoe napravlenie v optiko-akusticheskoi spektroskopii tverdogo tela”, Uspekhi fizicheskikh nauk, 147:3 (1985), 605–620

[4] Yu.V. Gulyaev, I.E. Dikshtein, V.G. Shavrov, “Poverkhnostnye magnitoakusticheskie volny v magnitnykh kristallakh v oblasti orientatsionnykh fazovykh perekhodov”, Uspekhi fizicheskikh nauk, 167:7 (1997), 735–750 | DOI

[5] V.V. Muravev, L.B. Zuev, K.L. Komarov, Skorost zvuka i struktura stalei i splavov, Nauka. Sibirskaya izdatelskaya firma RAN, Novosibirsk, 1996, 184 pp.

[6] Teoriya i praktika ultrazvukovogo kontrolya, Mashinostroenie, M., 1981, 240 pp.

[7] I.N. Ermolov, N.P. Aleshin, A.I. Potapov, Nerazrushayuschii kontrol, prakt. posobie, v. 2, Akusticheskie metody kontrolya, Vyssh. shk., M., 1991, 283 pp.

[8] D. Carnadas, C. Trillo, A.F. Doval et al., “Non-destructive Testing with Surface Acoustic Waves using Double-Pulse TV Holography”, Meas. Sci. Technol., 2002, no. 13, 438–444

[9] D.I. Crecraft, “Ultrasonic instrumentation: principles, methods and applications”, J. Phys. E: Sci. Instrum., 16:3 (1983), 181–189 | DOI

[10] F.L. Meirion, “Rayleigh Waves - a Progress Report”, Eur. J. Phys., 16 (1995), 1–7 | DOI

[11] O. Novotny, Seismic Surface Waves, Salvador, Bahia, 1999, 155 pp.

[12] I.A. Viktorov, Fizicheskie osnovy primeneniya ultrazvukovykh voln Releya i Lemba v tekhnike, Nauka, M., 1966, 168 pp.

[13] I.A. Viktorov, Zvukovye poverkhnostnye volny v tverdykh telakh, Nauka, M., 1981, 287 pp.

[14] V.G. Mozhaev, “Priblizhennye analiticheskie vyrazheniya dlya skorosti voln Releya v izotropnykh sredakh i na bazisnoi ploskosti v vysokosimmetrichnykh kristallakh”, Akusticheskii zhurnal, 37:2 (1991), 368–374

[15] P.C. Vinh, P.G. Malischewsky, “Improved Approximations of the Rayleigh Wave Velocity”, Journal of Thermoplastic Composite Materials, 21:4 (2008), 337–352 | DOI

[16] T. Zhao, D. Wang, H. Hong, “Solution formulas for cubic equations without or with constraints”, J. Symb. Comput., 46 (2011), 904–918 | DOI | MR

[17] G. Cardano, Ars Magna, Nurmberg, 1545 | MR

[18] J. Stedall, From Cardano's Great Art to Lagrange's Reflections. Filling a Gap in the History of Algebra, Heritage of European Mathematics, European Mathematical Society (EMS), Zurich, 2011, 236 pp. (German, English) | DOI | MR

[19] D. Herbison-Evans, Solving Quartics and Cubics for Graphics, Technical Report TR94-487, 1994 (updated 31 March 2011, 27 May 2017, 13 January 2019)

[20] G. Sudheer, M.H. Lakshmi, Y.V. Rao, “A Note on Formulas for the Rayleigh Wave Speed in Elastic Solids”, Ultrasonics, 73 (2017), 82–87 | DOI

[21] H. Mechkour, “The Exact Expressions for the Roots of Rayleigh Wave Equation”, Proceedings of the 2-nd International Colloquium of Mathematics in Engineering and Numerical Physics, MENP-2 (April 22-27, Bucharest, ROMANIA), 2002, 96–104

[22] L.D. Landau, E.M. Lifshits, Teoreticheckaya fizika, v. VII, Teoriya uprugosti, Nauka, M., 1987, 248 pp. | MR

[23] https://maxima.sourceforge.io/ru/index.html

[24] https://wolframalfa.com

[25] A. Pichugin, Approximation of the Rayleigh Wave Speed, People.Brunel.Ac.Uk, 2008, 2008 pp. (Unpublished draft) http://people.brunel.ac.uk/m̃astaap/draft06rayleigh.pdf

[26] N. Vinogradov, K. Ulyanov, “Izmerenie skorosti i zatukhaniya ultrazvukovykh poverkhnostnykh voln v tverdykh materialakh”, Akusticheskii zhurnal, 5:3 (1959), 290–293

[27] Al.A. Kolomenskii, A.A. Maznev, “Poverkhnostnye otkliki pri lazernom vozdeistvii na tverdoe telo: releevskie volny i predvestniki”, Akust. zhurn., 36:3 (1990), 463–469

[28] I.K. Kikoin, Tablitsy fizicheskikh velichin. Spravochnik, Atomizdat, M., 1976, 1005 pp.