@article{VYURM_2023_15_1_a5,
author = {A. V. Ryazhskih and A. A. Khvostov and E. A. Soboleva and V. I. Ryazhskih},
title = {The temperature pattern of a homogeneous square area with adjacent sides moving without acceleration under boundary conditions of the first kind},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {55--62},
year = {2023},
volume = {15},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a5/}
}
TY - JOUR AU - A. V. Ryazhskih AU - A. A. Khvostov AU - E. A. Soboleva AU - V. I. Ryazhskih TI - The temperature pattern of a homogeneous square area with adjacent sides moving without acceleration under boundary conditions of the first kind JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2023 SP - 55 EP - 62 VL - 15 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a5/ LA - ru ID - VYURM_2023_15_1_a5 ER -
%0 Journal Article %A A. V. Ryazhskih %A A. A. Khvostov %A E. A. Soboleva %A V. I. Ryazhskih %T The temperature pattern of a homogeneous square area with adjacent sides moving without acceleration under boundary conditions of the first kind %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2023 %P 55-62 %V 15 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a5/ %G ru %F VYURM_2023_15_1_a5
A. V. Ryazhskih; A. A. Khvostov; E. A. Soboleva; V. I. Ryazhskih. The temperature pattern of a homogeneous square area with adjacent sides moving without acceleration under boundary conditions of the first kind. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 1, pp. 55-62. http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a5/
[1] J.-Ch. Lin, T. Wei, “Moving Boundary Identification for a Two-Dimensional Inverse Heat Conduction Problem”, Inverse Problems in Science and Engineering, 19:8 (2011), 1139–1154 | DOI | MR
[2] Z. Duan, H. Sun, C. Cheng et al., “A Moving-Boundary Based Dynamic Model for Predicting the Transient Free Convection and Thermal Stratification in Liquefied Gas Storage Tank”, Int. J. of Thermal Sciences, 160 (2021), 106890 | DOI
[3] A.V. Ryazhskih, “Sedimentation of a Low-Concentration Suspension of Stokes Particles in a Stirred Layer with a Movable Free Boundary”, Technical Physics, 64 (2019), 1082–1089 | DOI
[4] S. Sulc, V. Smilaner, F. Wald, “Thermal Model for Timber Fire Exposure with Moving Boundary”, Materials, 14:3 (2021), 574–584 | DOI
[5] Feyissa A.H., Adler-Nissen J., Gernacy K.V., “Model of Heat and Mass Transfer with Moving Boundary during Roasting of Meat in Convection-Oven”, Proceedings of the COMSOL Conference (Milan, 2009), 168420
[6] A. Adrover, C. Venditti, A. Brasiello, “A Non-Isothermal Moving-Boundary Model for Continues and Intermittent Drying of Pears”, Foods, 9:11 (2020), 1577–1599 | DOI
[7] V.S. Avduevskii, B.M. Galitseiskii, G.A. Glebov, V.K. Koshkin, Osnovy teploperedachi v aviatsionnoi i raketno-kosmicheskoi tekhnike, Mashinostroenie, M., 1992, 518 pp.
[8] S.C. Gupta, “Temperature and Moving Boundary in Two-Phase Freezing due to an Axisymmetric Cold Spot”, Quarterly of applied mathematics, 45 (1987), 205–222 | DOI | MR
[9] J. Crank, Free and Moving Boundary Problems, Clarendon Press, Oxford, 1984, 425 pp. | MR
[10] M.N. Ozisik, Heat Conduction, John Willey Soons, Inc., NY, 1993, 692 pp.
[11] G. Karslou, D. Eger, Teploprovodnost tverdykh tel, Nauka, M., 1964, 487 pp.
[12] A.G. Rubin, “Reshenie kraevykh zadach nestatsionarnoi teploprovodnosti v oblasti s dvizhuscheisya granitsei pri nalichii istochnika teploty”, Chelyabinskii fiziko-matematicheskii zhurnal, 3:1(2) (1994), 108–111
[13] E.M. Kartashov, Analiticheskie metody v teorii teploprovodnosti tverdykh tel, Vyssh. shk., M., 2001, 549 pp.
[14] P.A. Vlasov, “Vliyanie ravnomernogo dvizheniya granitsy na temperaturnoe pole poluprostranstva, podverzhennogo nagrevu vneshnim teplovym potokom”, Nauka i obrazovanie. MGTU im. N.E. Baumana, 2014, no. 8, 101–109
[15] V. Kulish, V. Horak, “A Non-Field Analytical Method for Heat Transfer Problems through a Moving Boundary”, Scientific Reports, 11 (2021), 18968 | DOI
[16] H.G. Landau, “Heat Conduction in a Melting Solid”, Quarterly of applied mathematics, 8:1 (1950), 81–94 | DOI | MR