The temperature pattern of a homogeneous square area with adjacent sides moving without acceleration under boundary conditions of the first kind
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 1, pp. 55-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A square area with homogeneous thermal and physical characteristics, deformed preserving 2-D similarity, is investigated. At the initial moment of time, two adjacent sides start moving respectively towards the abscissa and ordinate axes with constant speed while remaining equidistant to the other two adjacent sides (the fixed and moving sides are kept at different constant temperatures). A nonlinear initial boundary value problem with boundary conditions of the first kind and special coordinates immobilizes the moving boundary of the area into a fixed one with the corresponding transformation of the initial boundary value problem for the fixed boundaries with respect to the multiplicative variable of two unknown functions, which are defined by additional initial boundary values. These were solved by the successive application of integral sine transformations on pseudo-space variables. This enables the solution of the original problem to be notated analytically using special quadratures. The computational experiment proved the correctness of the solution and the absolute fulfillment of the initial conditions. The results also illustrate the adequacy of the qualitative calculations for the heating process of a quadratic area with moving adjacent boundaries. This approach can be applied to the differently directed motion of adjacent boundaries, to uniformly retarded or uniformly accelerated motion. Considering that Fourier's and Fick's laws are mathematically similar, the solution and its generalization are of practical importance in describing mass transfer processes, such as crystallization or dissolution.
Keywords: thermal conductivity, moving boundary, square area, analytical solution, boundary conditions of the first kind.
@article{VYURM_2023_15_1_a5,
     author = {A. V. Ryazhskih and A. A. Khvostov and E. A. Soboleva and V. I. Ryazhskih},
     title = {The temperature pattern of a homogeneous square area with adjacent sides moving without acceleration under boundary conditions of the first kind},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {55--62},
     year = {2023},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a5/}
}
TY  - JOUR
AU  - A. V. Ryazhskih
AU  - A. A. Khvostov
AU  - E. A. Soboleva
AU  - V. I. Ryazhskih
TI  - The temperature pattern of a homogeneous square area with adjacent sides moving without acceleration under boundary conditions of the first kind
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2023
SP  - 55
EP  - 62
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a5/
LA  - ru
ID  - VYURM_2023_15_1_a5
ER  - 
%0 Journal Article
%A A. V. Ryazhskih
%A A. A. Khvostov
%A E. A. Soboleva
%A V. I. Ryazhskih
%T The temperature pattern of a homogeneous square area with adjacent sides moving without acceleration under boundary conditions of the first kind
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2023
%P 55-62
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a5/
%G ru
%F VYURM_2023_15_1_a5
A. V. Ryazhskih; A. A. Khvostov; E. A. Soboleva; V. I. Ryazhskih. The temperature pattern of a homogeneous square area with adjacent sides moving without acceleration under boundary conditions of the first kind. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 1, pp. 55-62. http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a5/

[1] J.-Ch. Lin, T. Wei, “Moving Boundary Identification for a Two-Dimensional Inverse Heat Conduction Problem”, Inverse Problems in Science and Engineering, 19:8 (2011), 1139–1154 | DOI | MR

[2] Z. Duan, H. Sun, C. Cheng et al., “A Moving-Boundary Based Dynamic Model for Predicting the Transient Free Convection and Thermal Stratification in Liquefied Gas Storage Tank”, Int. J. of Thermal Sciences, 160 (2021), 106890 | DOI

[3] A.V. Ryazhskih, “Sedimentation of a Low-Concentration Suspension of Stokes Particles in a Stirred Layer with a Movable Free Boundary”, Technical Physics, 64 (2019), 1082–1089 | DOI

[4] S. Sulc, V. Smilaner, F. Wald, “Thermal Model for Timber Fire Exposure with Moving Boundary”, Materials, 14:3 (2021), 574–584 | DOI

[5] Feyissa A.H., Adler-Nissen J., Gernacy K.V., “Model of Heat and Mass Transfer with Moving Boundary during Roasting of Meat in Convection-Oven”, Proceedings of the COMSOL Conference (Milan, 2009), 168420

[6] A. Adrover, C. Venditti, A. Brasiello, “A Non-Isothermal Moving-Boundary Model for Continues and Intermittent Drying of Pears”, Foods, 9:11 (2020), 1577–1599 | DOI

[7] V.S. Avduevskii, B.M. Galitseiskii, G.A. Glebov, V.K. Koshkin, Osnovy teploperedachi v aviatsionnoi i raketno-kosmicheskoi tekhnike, Mashinostroenie, M., 1992, 518 pp.

[8] S.C. Gupta, “Temperature and Moving Boundary in Two-Phase Freezing due to an Axisymmetric Cold Spot”, Quarterly of applied mathematics, 45 (1987), 205–222 | DOI | MR

[9] J. Crank, Free and Moving Boundary Problems, Clarendon Press, Oxford, 1984, 425 pp. | MR

[10] M.N. Ozisik, Heat Conduction, John Willey Soons, Inc., NY, 1993, 692 pp.

[11] G. Karslou, D. Eger, Teploprovodnost tverdykh tel, Nauka, M., 1964, 487 pp.

[12] A.G. Rubin, “Reshenie kraevykh zadach nestatsionarnoi teploprovodnosti v oblasti s dvizhuscheisya granitsei pri nalichii istochnika teploty”, Chelyabinskii fiziko-matematicheskii zhurnal, 3:1(2) (1994), 108–111

[13] E.M. Kartashov, Analiticheskie metody v teorii teploprovodnosti tverdykh tel, Vyssh. shk., M., 2001, 549 pp.

[14] P.A. Vlasov, “Vliyanie ravnomernogo dvizheniya granitsy na temperaturnoe pole poluprostranstva, podverzhennogo nagrevu vneshnim teplovym potokom”, Nauka i obrazovanie. MGTU im. N.E. Baumana, 2014, no. 8, 101–109

[15] V. Kulish, V. Horak, “A Non-Field Analytical Method for Heat Transfer Problems through a Moving Boundary”, Scientific Reports, 11 (2021), 18968 | DOI

[16] H.G. Landau, “Heat Conduction in a Melting Solid”, Quarterly of applied mathematics, 8:1 (1950), 81–94 | DOI | MR