A solution to the Riquier-Neymann problem for polyharmonic equations in a ball
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 1, pp. 26-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, an elementary solution for polyharmonic equations is determined and its properties are given. This elementary solution coincides with previously known elementary solutions of biharmonic and triharmonic equations. Using the elementary solution, an integral representation of the solutions of a non-homogeneous polyharmonic equation in a bounded domain with a smooth boundary is found. Based on the integral representation, the solvability of the Riquier-Neumann problem is investigated. First, the concept of the Green's function of the Riquier-Neumann problem is defined, and then the Green's function is proved. Using the integral representation of the solutions of the polyharmonic equation and the Green's function of the Riquier-Neumann problem, the integral representation of the solution of the Riquier-Neumann problem in a unit ball is found. An example of the solution of the Neumann problem for the Poisson equation with the simplest right-hand side is given, which is necessary in what follows. On the basis of the Green's function of the Riquier-Neumann problem, a theorem on the integral representation of the solution of the Riquier-Neumann boundary value problem with boundary data, the integral of which over the unit sphere vanishes, is proved. In conclusion, on the basis of the theorem, an example of calculating the solution of the Riquier-Neumann problem with boundary functions coinciding with the traces of homogeneous harmonic polynomials on a unit sphere is given.
Mots-clés : polyharmonic equation, the Riquier-Neumann problem
Keywords: Green's function.
@article{VYURM_2023_15_1_a2,
     author = {V. V. Karachik},
     title = {A solution to the {Riquier-Neymann} problem for polyharmonic equations in a ball},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {26--33},
     year = {2023},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a2/}
}
TY  - JOUR
AU  - V. V. Karachik
TI  - A solution to the Riquier-Neymann problem for polyharmonic equations in a ball
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2023
SP  - 26
EP  - 33
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a2/
LA  - ru
ID  - VYURM_2023_15_1_a2
ER  - 
%0 Journal Article
%A V. V. Karachik
%T A solution to the Riquier-Neymann problem for polyharmonic equations in a ball
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2023
%P 26-33
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a2/
%G ru
%F VYURM_2023_15_1_a2
V. V. Karachik. A solution to the Riquier-Neymann problem for polyharmonic equations in a ball. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 1, pp. 26-33. http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a2/

[1] H. Begehr, “Biharmonic Green functions”, Le Matematiche, 61:2 (2006), 395–405 | MR

[2] H. Begehr, T. Vaitekhovich, “Modified Harmonic Robin Function”, Complex Variables and Elliptic Equations, 58:4 (2013), 483–496 | DOI | MR

[3] M.A. Sadybekov, “On an Explicit Form of the Green Function of the Robin Problem for the Laplace Operator in a Circle”, Advances in Pure and Applied Mathematics, 6:3 (2015), 163–172 | DOI | MR

[4] Y. Wang, L. Ye, “Biharmonic Green Function and Biharmonic Neumann Function in a Sector”, Complex Variables Elliptic Equ., 58:1 (2013), 7–22 | DOI | MR

[5] Y. Wang, “Tri-harmonic Boundary Value Problems in a Sector”, Complex Variables Elliptic Equ., 59:5 (2014), 732–749 | DOI | MR

[6] T. Boggio, “Sulle funzioni di Green d'ordine m”, Rend. Circ. Matem. Palermo, 20 (1905), 97–135 | DOI

[7] T.Sh. Kalmenov, B.D. Koshanov, M.Y. Nemchenko, “Green Function Representation for the Dirichlet Problem of the Polyharmonic Equation in a Sphere”, Complex Var. Elliptic Equ., 53:2 (2008), 177–183 | DOI | MR

[8] V.V. Karachik, B.Kh. Turmetov, “On Green's Function of the Robin Problem for the Poisson Equation”, Advances in Pure and Applied Mathematics, 10:3 (2019), 203–214 | DOI | MR

[9] V.V. Karachik, “Polinomialnye resheniya zadachi Dirikhle dlya 3-garmonicheskogo uravneniya v share”, Zhurnal Sibirskogo federalnogo universiteta. Seriya «Matematika i fizika», 5:4 (2012), 527–546

[10] V.V. Karachik, B.T. Torebek, “O zadache Dirikhle-Rike dlya bigarmonicheskogo uravneniya”, Matem. zametki, 102:1 (2017), 39–51 | MR

[11] V.V. Karachik, “Ob odnoi zadache tipa Neimana dlya bigarmonicheskogo uravneniya”, Matematicheskie trudy, 19:2 (2016), 86–108

[12] A.P. Soldatov, “O fredgolmovosti i indekse obobschennoi zadachi Neimana”, Differentsialnye uravneniya, 56:2 (2020), 217–225 | MR

[13] “Funktsii Grina zadach Nave i Rike-Neimana dlya bigarmonicheskogo uravneniya v share”, Differents. uravneniya, 57:5 (2021), 673–686

[14] G. Sweers, “A Survey on Boundary Conditions for the Biharmonic”, Complex Variables and Elliptic Equations, 54:2 (2009), 79–93 | DOI | MR

[15] V. Karachik, B. Turmetov, H. Yuan, “Four Boundary Value Problems for a Nonlocal Biharmonic Equation in the Unit Ball”, Mathematics, 10:7 (2022), 1–21 | DOI | MR

[16] A.V. Bitsadze, Uravneniya matematicheskoi fiziki, Nauka, M., 1982, 336 pp. | MR

[17] V.V. Karachik, “Greens Function of Dirichlet Problem for Biharmonic Equation in the Ball”, Complex Variables and Elliptic Equations, 64:9 (2019), 1500–1521 | DOI | MR

[18] V.V. Karachik, “O funktsii Grina zadachi Dirikhle dlya bigarmonicheskogo uravneniya v share”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 59:1 (2019), 71–86 | MR

[19] V.V. Karachik, B.Kh. Turmetov, “O funktsii Grina tretei kraevoi zadachi dlya uravneniya Puassona”, Matem. trudy, 21:1 (2018), 17–34

[20] A.V. Bitsadze, “O nekotorykh svoistvakh poligapmonicheskikh funktsii”, Differents. ur-niya, 24:5 (1988), 825–831 | MR

[21] A.V. Bitsadze, “K zadache Neimana dlya garmonicheskikh funktsii”, DAN SSSR, 311:1 (1990), 11–13 | MR

[22] V.V. Karachik, “Ob arifmeticheskom treugolnike, voznikayuschem iz uslovii razreshimosti zadachi Neimana”, Matematicheskie zametki, 96:2 (2014), 228–238

[23] V.S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1981, 512 pp. | MR

[24] V.V. Karachik, “Zadacha Rike-Neimana dlya poligarmonicheskogo uravneniya v share”, Differentsialnye uravneniya, 54:5 (2018), 653–662

[25] V.V. Karachik, “On One Set of Orthogonal Harmonic Polynomials”, Proceedings of the American Mathematical Society, 126:12 (1998), 3513–3519 | DOI | MR