The application of numerical methods to solve linear systems with a time delay
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 1, pp. 5-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers the application of modified numerical methods for solving differential equations with a delay which linearly depends on time. Since the delay increases indefinitely, it is also necessary to apply asymptotic methods to analyze the behavior of the solutions of such systems. The paper establishes the asymptotic properties of the systems under study, which significantly affect the accuracy of the numerical calculation. Given the unbounded delay and the instability of the solutions and to clarify the properties of the solution of such systems, it is useful to know the asymptotic properties of the derivatives having an order greater than one. Under the conditions formulated in the article, these derivatives tend to zero as $t\to \infty$. This property makes it possible to apply finite-order numerical methods (such as the Runge-Kutta method and the modified Euler method). As an illustration of the effectiveness of the methods developed, the article calculates the vertical oscillations of a locomotive pantograph moving at a constant speed when interacting with the contact wire. The numerical methods allow the study of the asymptotic behavior of more complex systems containing both constant and linear delay. Note that the use of numerical methods for calculating the solution reveal the instability of the solution of the systems under study and can be used to stabilize some systems containing an unlimited (not necessarily linear) delay.
Keywords: linear delay, numerical methods, asymptotic stability.
@article{VYURM_2023_15_1_a0,
     author = {B. G. Grebenshchikov and S. A. Zagrebina and A. B. Lozhnikov},
     title = {The application of numerical methods to solve linear systems with a time delay},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {5--15},
     year = {2023},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a0/}
}
TY  - JOUR
AU  - B. G. Grebenshchikov
AU  - S. A. Zagrebina
AU  - A. B. Lozhnikov
TI  - The application of numerical methods to solve linear systems with a time delay
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2023
SP  - 5
EP  - 15
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a0/
LA  - ru
ID  - VYURM_2023_15_1_a0
ER  - 
%0 Journal Article
%A B. G. Grebenshchikov
%A S. A. Zagrebina
%A A. B. Lozhnikov
%T The application of numerical methods to solve linear systems with a time delay
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2023
%P 5-15
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a0/
%G ru
%F VYURM_2023_15_1_a0
B. G. Grebenshchikov; S. A. Zagrebina; A. B. Lozhnikov. The application of numerical methods to solve linear systems with a time delay. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 15 (2023) no. 1, pp. 5-15. http://geodesic.mathdoc.fr/item/VYURM_2023_15_1_a0/

[1] B.G. Grebenschikov, V.I. Rozhkov, “Asimptoticheskoe povedenie resheniya odnoi statsionarnoi sistemy s zapazdyvaniem”, Differents. uravneniya, 29:5 (1993), 751–758 | MR

[2] B.G. Grebenschikov, S.I. Novikov, “O neustoichivosti odnoi sistemy s lineinym zapazdyvaniem”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 2010, no. 2, 3–13

[3] A.V. Kim, V.G. Pimenov, i-Gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2004, 255 pp.

[4] Kh.I. Shtetter, Analiz metodov diskretizatsii dlya obyknovennykh differentsialnykh uravnenii, Mir, M., 1978, 461 pp. | MR

[5] L. Fox, D.F. Mayers, J.R. Ockendon, A.B. Tayler, “On a Functional Differential Equation”, IMA Journal of Applied Mathematics, 8:3 (1971), 271–307 | DOI | MR

[6] J.R. Ockendon, A.B. Taylor, “The Dynamics of a Current Collection System for an Electric Locomotive”, Proceedings of the Royal Society of London A - Mathematical and Physical Sciences, 322:1551 (1971), 447–468 | DOI

[7] B.G. Grebenschikov, “Ob ogranichennosti reshenii neodnorodnykh sistem s zapazdyvaniem, lineino zavisyaschim ot vremeni”, Ustoichivost i nelineinye kolebaniya, sb. nauch. tr., UrGU, Sverdlovsk, 1986, 7–12

[8] A.N. Sesekin, A.S. Shlyakhov, “Ob odnoi matematicheskoi modeli upravleniya investitsiyami, privodyaschei k sisteme s postoyannym i lineinym zapazdyvaniyami”, Itogi nauki i tekhniki. Seriya «Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory», 192, 2021, 111–116

[9] R. Bellman, K. Kuk, Differentsialno-raznostnye uravneniya, Mir, M., 1967, 548 pp.

[10] A. Khalanai, D. Veksler, Kachestvennaya teoriya impulsnykh sistem, Mir, M., 1971, 309 pp. | MR

[11] N.N. Krasovskii, Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 211 pp.

[12] B.G. Grebenschikov, “Ob ustoichivosti nestatsionarnykh sistem s bolshim zapazdyvaniem”, Ustoichivost i nelineinye kolebaniya, sb. nauch. tr., UrGU, Sverdlovsk, 1984, 18–29

[13] B.G. Grebenschikov, “Ob ustoichivosti lineinykh sistem s postoyannym zapazdyvaniem i eksponentsialnymi koeffitsientami”, Matematicheskii analiz. Voprosy teorii, istorii i metodiki prepodavaniya, mezhvuz. sb. nauch. tr., L., 1990, 138–148