Atomic and electronic structures of chiral gold nanotubes
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 4, pp. 59-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article presents the results of a study of the atomic and electronic structure of gold nanotubes that do not have mirror symmetry. The elementary cells of nanotubes (4, 3) and (5, 3) are constructed and their properties are modeled in the framework of the density functional theory using periodic boundary conditions. Different behavior of two types of interatomic distances was established during the “twisting” of the triangular lattice of the nanotube wall. The bonds in first one turned out to be noticeably shorter than in nanotubes with mirror symmetry. The features of the electronic structure and partial densities of electronic states, in general, turned out to be regardless of the presence of mirror symmetry.
Keywords: gold nanotube, density functional theory, band structure, density of states.
@article{VYURM_2022_14_4_a7,
     author = {E. R. Sozykina and S. A. Sozykin},
     title = {Atomic and electronic structures of chiral gold nanotubes},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {59--64},
     year = {2022},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a7/}
}
TY  - JOUR
AU  - E. R. Sozykina
AU  - S. A. Sozykin
TI  - Atomic and electronic structures of chiral gold nanotubes
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 59
EP  - 64
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a7/
LA  - ru
ID  - VYURM_2022_14_4_a7
ER  - 
%0 Journal Article
%A E. R. Sozykina
%A S. A. Sozykin
%T Atomic and electronic structures of chiral gold nanotubes
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 59-64
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a7/
%G ru
%F VYURM_2022_14_4_a7
E. R. Sozykina; S. A. Sozykin. Atomic and electronic structures of chiral gold nanotubes. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 4, pp. 59-64. http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a7/

[1] B. Schaefer, R. Pal, N.S. Khetrapal et al., “Isomerism and Structural Fluxionality in the Au$_{26}$ and Au$_{26}^-$ Nanoclusters”, ACS Nano, 8:7 (2014), 7413–7422 | DOI

[2] Y. Oshima, K. Onga, A. Takayanagi, “Helical Gold Nanotube Synthesized at 150 K”, Physical Review Letters, 91:20 (2003), 205503 | DOI

[3] W. Dong, H. Dong, Z. Wang et al., “Ordered Array of Gold Nanoshells Interconnected with Gold Nanotubes Fabricated by Double Templating”, Adv. Mater., 18:6 (2006), 755–759 | DOI

[4] J. Chen, B.J. Wiley, Y. Xia, “One-Dimensional Nanostructures of Metals: Large-Scale Synthesis and some Potential Applications”, Langmuir, 23:8 (2007), 4120–4129 | DOI

[5] H.H. Li, S.H. Yu, “Recent Advances on Controlled Synthesis and Engineering of Hollow Alloyed Nanotubes for Electrocatalysis”, Adv. Mater., 31:38 (2019), 1803503 | DOI

[6] W.R. Hendren, A. Murphy, P. Evans et al., “Fabrication and Optical Properties of Gold Nanotube Arrays”, J. Phys.: Condens. Matter., 20:36 (2008), 362203 | DOI

[7] C.R. Bridges, P.M. DiCarmine, D.S. Seferos, “Gold Nanotubes as Sensitive, Solution-Suspendable Refractive Index Reporters”, Chem. Mater., 24:6 (2012), 963–965 | DOI

[8] S. Ye, G. Marston, J.R. McLaughlan et al., “Engineering Gold Nanotubes with Controlled Length and Near-Infrared Absorption for Theranostic Applications”, Adv. Funct. Mater., 25:14 (2015), 2117–2127 | DOI

[9] J. Wang, C. Zhang, J. Zhang et al., “Hybrid Plasmonic Cavity Modes in Arrays of Gold Nanotubes”, Adv. Opt. Mater., 5:4 (2016), 1–11 | Zbl

[10] S. Ye, G. Marston, A.F. Markham et al., “Developing Gold Nanotubes as Photoacoustic Contrast Agents”, J. Phys.: Conf. Ser., 1151:1 (2019), 012018

[11] Y.L. Liu, J. Zhu, G.J. Weng, J. Zhao, “Gold Nanotubes: Synthesis, Properties and Biomedical Applications”, Microchim Acta, 187 (2020), 612 pp.

[12] U. Shamraiz, B. Raza, H. Hussain et al., “Gold Nanotubes and Nanorings: Promising Candidates for Multidisciplinary Fields”, Int. Mater. Rev., 64:3 (2018), 478–512

[13] S.A. Sozykin, V.P. Beskachko, “Electronic Structure of Achiral Gold Nanotubes”, Physica E: Low-dimensional Systems and Nanostructures, 115 (2020), 113686 | DOI

[14] P. Kapoor, M. Sharma, P.K. Ahluwalia, “Chirality Dependent Structural, Electronic and Mechanical Properties of Pristine Ag, Au and Pt Nanotubes: A DFT Study”, Phys. E: Low Dimens. Syst. Nanostructures, 131 (2021), 114745 | DOI

[15] J.M. Soler, E. Artacho, J.D. Gale et al., “The SIESTA Method for Ab Initio Order-N Materials Simulation”, J. Phys. Condens. Matter., 14:11 (2002), 2745–2779 | DOI

[16] R.T. Senger, S. Dag, S. Ciraci, “Shiral Single-Wall Gold Nanotubes”, Phys. Rev. Lett., 93:19 (2004), 196807 | DOI

[17] D.Zs. Manrique, J. Cserti, C.J. Lambert, “Chiral Currents in Gold Nanotubes”, Phys. Rev. B, 81:7 (2010), 073103 | DOI