Modeling the polymorphic varieties of L4-6-12 graphene functionalized by hydroxyl group
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 4, pp. 52-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Density functional theory in the generalized gradient approximation was used to model three new polymorphic varieties of graphene functionalized by the hydroxyl group, consisting only of paired topological defects 4-6-12. Layer modeling was carried out for primitive hexagonal elementary cells with the types of addition of the hydroxyl group T1, T2, T3. Each of the elementary cells contained 36 atoms. As a result of the calculations, it was established that the carbon frame of the initial layer remains stable during functionalization for the T1 and T3 types, while the functionalized layer T2 undergoes destruction. The layer density in hydroxygraphene layers L4-6-12 with attachment types T1 and T3 is 1,34 and 1,36 mg/m$^{2}$, respectively. This is less than the layer density for similar fluorographene layers by 0,08-0,16 mg/m$^{2}$. The sublimation energies of stable layers T1 and T3 were 18,16 and 17,37 eV/(COH), respectively. Densities of electronic states and band structures were calculated, in order to determine the band gaps. The value of the band gap width was determined as equal to 3.33 eV for the T1 layer and 1,93 eV for the T3 layer. This enabled the layers thus obtained to be identified as semiconductors.
Mots-clés : graphene, ab initio calculations, polymorphism
Keywords: hydroxyl group, electronic properties, crystal structure, functionalization.
@article{VYURM_2022_14_4_a6,
     author = {M. E. Belenkov and V. A. Greshnyakov and V. M. Chernov},
     title = {Modeling the polymorphic varieties of {L4-6-12} graphene functionalized by hydroxyl group},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {52--58},
     year = {2022},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a6/}
}
TY  - JOUR
AU  - M. E. Belenkov
AU  - V. A. Greshnyakov
AU  - V. M. Chernov
TI  - Modeling the polymorphic varieties of L4-6-12 graphene functionalized by hydroxyl group
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 52
EP  - 58
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a6/
LA  - ru
ID  - VYURM_2022_14_4_a6
ER  - 
%0 Journal Article
%A M. E. Belenkov
%A V. A. Greshnyakov
%A V. M. Chernov
%T Modeling the polymorphic varieties of L4-6-12 graphene functionalized by hydroxyl group
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 52-58
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a6/
%G ru
%F VYURM_2022_14_4_a6
M. E. Belenkov; V. A. Greshnyakov; V. M. Chernov. Modeling the polymorphic varieties of L4-6-12 graphene functionalized by hydroxyl group. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 4, pp. 52-58. http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a6/

[1] K.S. Novoselov, “Nobel Lecture: Graphene: Materials in the Flatland”, Reviews of Modern Physics, 83:3 (2011), 837–849 | DOI

[2] C. Shen, S.O. Oyadiji, “The Processing and Analysis of Graphene and the Strength Enhancement Effect of Graphene-Based Filler Materials: A Review”, Materials Today Physics, 15 (2020), 100257 | DOI | MR

[3] S. Ghosh, D.L. Nika, E.P. Pokatilov, A.A. Balandin, “Heat conduction in graphene: experimental study and theoretical interpretation”, New Journal of Physics, 11:9 (2009), 095012 | DOI | MR

[4] M. Sang, J. Shin, K. Kim, K. Yu, “Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications”, Nanomaterials, 9:3 (2019), 374 | DOI

[5] I.S. Burmistrov, I.V. Gornyi, V.Y. Kachorovskii et al., “Stress-Controlled Poisson Ratio of a Crystalline Membrane: Application to Graphene”, Physical Review B, 97:12 (2018), 125402 | DOI

[6] D.E. Sheehy, J. Schmalian, “Optical Transparency of Graphene as Determined by the fine-Structure Constant”, Physical Review B, 80:19 (2009), 193411 | DOI

[7] G. Omar, M.A. Salim, B.R. Mizah et al., Functionalized Graphene Nanocomposites and their Derivatives, 2019, 245–263 | DOI

[8] E. Khalaf, A.J. Kruchkov, G. Tarnopolsky, A. Vishwanath, “Magic angle Hierarchy in Twisted Graphene Multilayers”, Physical Review B, 100:8 (2019), 085109 | DOI

[9] V.V. Mavrinskii, E.A. Belenkov, “Structure and Electronic Properties of 5–7c Graphyne Polymorphs”, AIP Conference Proceedings, 2533 (2022), 020021 | DOI

[10] Y. Zhang, Q. Wan, N. Yang, “Recent Advances of Porous Graphene: Synthesis, Functionalization, and Electrochemical Applications”, Small, 15:48 (2019), 1903780 | DOI

[11] Greshnyakov V. A., Belenkov E. A., “Teoreticheskoe issledovanie fazovogo prevrascheniya tetragonalnogo grafena L$_{4--8}$ v polimorfnuyu raznovidnost almaza LA7”, Vestnik YuUrGU. Seriya «Matematika. Mekhanika. Fizika», 9:3 (2017), 51–57

[12] D.C. Elias, R.R. Nair, T.M.G. Mohiuddin et al., “Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane”, Science, 323:5914 (2009), 610–613 | DOI

[13] S. Puri, S. Bhowmick, “External-strain-induced semimetallic and metallic phase of chlorographene”, Physical Review Materials, 2:4 (2018), 044001 | DOI | MR

[14] Y. Wang, F. Grote, Q. Cao, S. Eigler, “Regiochemically Oxo-functionalized Graphene, Guided by Defect Sites, as Catalyst for Oxygen Reduction to Hydrogen Peroxide”, J. Phys. Chem. Lett., 12:41 (2021), 10009–10014 | DOI

[15] M.E. Belenkov, V.M. Chernov, “Structure and electronic properties of 4–6-12 graphene layers functionalized by fluorine”, Letters on Materials, 10:3 (2020), 254–259 | DOI

[16] P. Giannozzi, O. Andreussi, T. Brumme et al., “Advanced capabilities for materials modelling with Quantum ESPRESSO”, Journal of Physics: Condensed Matter, 29:46 (2017), 465901 | DOI

[17] J.P. Perdew, K. Burke, M. Ernzerhof, “Generalized Gradient Approximation Made Simple”, Physical Review Letters, 77:18 (1996), 3865–3868 | DOI

[18] M.E. Belenkov, V.M. Chernov, “Modelirovanie polimorfnykh raznovidnostei geksagonalnogo grafena, funktsionalizirovannogo gidroksilnymi gruppami”, Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov, 2021, no. 13, 541–551