Field data filtering for the digital simulation of three-dimensional turbulent flows using the LES approach
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 4, pp. 40-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Turbulence and subsequent mixing are important mechanisms which determine the dynamics of the coastal zone, as well as the transfer of momentum, mass and heat. In this paper, small-scale motion is excluded from the Navier-Stokes equations by applying the filtering operation. It is then modeled using subgrid models. In two-dimensional and three-dimensional cases, various types of filters are used: a box filter, a Gaussian filter and a Fourier filter, with a gradual decrease in the filter width. This enables the reproduction of a wider frequency range of fluctuations of the solution. The natural data obtained during the expedition in the Central-Eastern part of the Sea of Azov and in the Taganrog Bay at the research vessel Deneb of the Southern Scientific Center of the Russian Academy of Sciences were subjected to the filtration procedure. The hydrophysical ADCP probe Workhorse Sentinel 600 was used to measure the three-dimensional velocity vector of the water medium. In this way more than 3,000,000 initial measurements were obtained, at each of the 17 stations more than 150,000 were taken. The data thus obtained will be used for the digital simulation of three-dimensional turbulent flows using the LES approach and comparison with the results of averaging by RANS.
Mots-clés : turbulence, Gauss filter and Fourier filter
Keywords: large LES approach, subgrid models, box filter, hydrodynamics.
@article{VYURM_2022_14_4_a5,
     author = {A. I. Sukhinov and S. V. Protsenko and E. A. Protsenko},
     title = {Field data filtering for the digital simulation of three-dimensional turbulent flows using the {LES} approach},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {40--51},
     year = {2022},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a5/}
}
TY  - JOUR
AU  - A. I. Sukhinov
AU  - S. V. Protsenko
AU  - E. A. Protsenko
TI  - Field data filtering for the digital simulation of three-dimensional turbulent flows using the LES approach
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 40
EP  - 51
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a5/
LA  - ru
ID  - VYURM_2022_14_4_a5
ER  - 
%0 Journal Article
%A A. I. Sukhinov
%A S. V. Protsenko
%A E. A. Protsenko
%T Field data filtering for the digital simulation of three-dimensional turbulent flows using the LES approach
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 40-51
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a5/
%G ru
%F VYURM_2022_14_4_a5
A. I. Sukhinov; S. V. Protsenko; E. A. Protsenko. Field data filtering for the digital simulation of three-dimensional turbulent flows using the LES approach. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 4, pp. 40-51. http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a5/

[1] M. Poulain, M.J. Mercier, L. Brach et al., “Small Microplastics as a Main Contributor to Plastic Mass Balance in the North Atlantic Subtropical Gyre”, Environ. Sci. Technol., 53 (2019), 1157–1164 | DOI

[2] S.F. Zippel, J. Thomson, G. Farquharson, “Turbulence from Breaking Surface Waves at a River Mouth”, J. Phys. Oceanogr., 48 (2018), 435–453 | DOI

[3] G.G. Stokes, “Supplement to a Paper on the Theory of Oscillatory Waves”, Mathematical and Physical Papers, v. 1, Cambridge University Press, 1880, 314–326 | MR

[4] P.B. Smit, T.T. Janssen, T.H.C. Herbers, “Nonlinear Wave Kinematics near the Ocean Surface”, J. Phys. Oceanogr., 47 (2017), 1657–1673 | DOI

[5] M. Chamecki, T. Chor, D. Yang, C. Meneveau, “Material Transport in the Ocean Mixed Layer: Recent Developments Enabled by Large Eddy Simulations”, Rev. Geophys., 57 (2019), 1338–1371 | DOI

[6] M.H. DiBenedetto, N.T. Ouellette, J.R. Koseff, “Transport of Anisotropic Particles under Waves”, J. Fluid Mech., 837 (2018), 320–340 | DOI | MR | Zbl

[7] T.M. Karlsson, A. Kärrman, A. Rotander, M. Hassellöv, “Comparison Between Manta Trawl and in situ Pump Filtration Methods, and Guidance for Visual identification of Microplastics in Surface Waters”, Environ. Sci. Pollut. Res., 27:5 (2019), 5559–5571 | DOI

[8] V. Onink, D. Wichmann, P. Delandmeter, E. Van Sebille, “The Role of Ekman Currents, Geostrophy and Stokes Drift in the Accumulation of Floating Microplastic”, J. Geophys. Res. Oceans., 124:3 (2019), 1474–1490 | DOI

[9] J.C. Prata, J.P. da Costa, A.C. Duarte, T. Rocha-Santos, “Methods for Sampling and Detection of Microplastics in Water and Sediment: a Critical Review”, Trends Anal. Chem., 110 (2019), 150–159 | DOI

[10] A.I. Sukhinov, S.V. Protsenko, “Long Waves Simulation in Coastal Systems Using Parallel Computational Technologies”, Young Scientist's Third International Workshop on Trends in Information Processing, CEUR Workshop Proceedings, 2500, 2019, 1–10 http://ceur-ws.org/Vol-2500/paper_1.pdf

[11] S. Protsenko, T. Sukhinova, “Mathematical Modeling of Wave Processes and Transport of Bottom Materials in Coastal Water Areas Taking into Account Coastal Structures”, XIII International Scientific-Technical Conference “Dynamic of Technical Systems” (DTS-2017) (Rostov-on-Don, Russian Federation, September 13–15, 2017), MATEC Web of Conferences, 132, 2017, 04002 | DOI

[12] S.F. Zippel, J. Thomson, G. Farquharson, “Turbulence from Breaking Surface Waves at a River Mouth”, J. Phys. Oceanogr., 48:2 (2018), 435–453 | DOI