@article{VYURM_2022_14_4_a4,
author = {A. I. Sedov},
title = {Determining of continuous delay in a spectral problem for {Chebyshev} operator of the first kind},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {34--39},
year = {2022},
volume = {14},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a4/}
}
TY - JOUR AU - A. I. Sedov TI - Determining of continuous delay in a spectral problem for Chebyshev operator of the first kind JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2022 SP - 34 EP - 39 VL - 14 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a4/ LA - ru ID - VYURM_2022_14_4_a4 ER -
%0 Journal Article %A A. I. Sedov %T Determining of continuous delay in a spectral problem for Chebyshev operator of the first kind %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2022 %P 34-39 %V 14 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a4/ %G ru %F VYURM_2022_14_4_a4
A. I. Sedov. Determining of continuous delay in a spectral problem for Chebyshev operator of the first kind. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 4, pp. 34-39. http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a4/
[1] J. Hale, Theory of functional-differential equations, Springer-Verlag, New York, 1977, 366 pp. | MR | Zbl
[2] G. Freiling, V. Yurko, Inverse Sturm-Liouville Problems and Their Applications, Nova Science Publishers, Huntington, NY, 2001, 305 pp. | MR | Zbl
[3] V. Yurko, Method of Spectral Mappings in the Inverse Problem Theory. Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002, 303 pp. | MR
[4] A.I. Sedov, G.A. Kameneva, T.A. Bondarenko, “About one problem of identification of delay by spectral data”, Lecture Notes in Electrical Engineering, 729, 2021, 306–315 | DOI
[5] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v 2 t., v. 2, Nauka, M., 1974, 295 pp. | MR
[6] V.A. Sadovnichii, Teoriya operatorov, Vysshaya shkola, M., 1999, 367 pp.
[7] A.I. Sedov, “Ob obratnoi zadache spektralnogo analiza”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 4(221):7 (2011), 91–99 | Zbl
[8] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982, 430 pp. | MR