Determining of continuous delay in a spectral problem for Chebyshev operator of the first kind
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 4, pp. 34-39
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A perturbed singular ordinary differential Chebyshev operator of the first kind with continuous delay is considered in this paper. For an arbitrary numerical sequence that does not differ much from eigenvalues sequence of an unperturbed operator, a problem is set to find the perturbation operator containing a continuous delay. A theorem of the existence of such an operator is being proved. An algorithm of finding the delay function in the form of a Fourier series is built and substantiated. The algorithm substantiation is based on the regularized traces theory.
Keywords: regularized trace, singular ordinary differential operator, eigenvalues.
@article{VYURM_2022_14_4_a4,
     author = {A. I. Sedov},
     title = {Determining of continuous delay in a spectral problem for {Chebyshev} operator of the first kind},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {34--39},
     year = {2022},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a4/}
}
TY  - JOUR
AU  - A. I. Sedov
TI  - Determining of continuous delay in a spectral problem for Chebyshev operator of the first kind
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 34
EP  - 39
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a4/
LA  - ru
ID  - VYURM_2022_14_4_a4
ER  - 
%0 Journal Article
%A A. I. Sedov
%T Determining of continuous delay in a spectral problem for Chebyshev operator of the first kind
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 34-39
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a4/
%G ru
%F VYURM_2022_14_4_a4
A. I. Sedov. Determining of continuous delay in a spectral problem for Chebyshev operator of the first kind. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 4, pp. 34-39. http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a4/

[1] J. Hale, Theory of functional-differential equations, Springer-Verlag, New York, 1977, 366 pp. | MR | Zbl

[2] G. Freiling, V. Yurko, Inverse Sturm-Liouville Problems and Their Applications, Nova Science Publishers, Huntington, NY, 2001, 305 pp. | MR | Zbl

[3] V. Yurko, Method of Spectral Mappings in the Inverse Problem Theory. Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002, 303 pp. | MR

[4] A.I. Sedov, G.A. Kameneva, T.A. Bondarenko, “About one problem of identification of delay by spectral data”, Lecture Notes in Electrical Engineering, 729, 2021, 306–315 | DOI

[5] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v 2 t., v. 2, Nauka, M., 1974, 295 pp. | MR

[6] V.A. Sadovnichii, Teoriya operatorov, Vysshaya shkola, M., 1999, 367 pp.

[7] A.I. Sedov, “Ob obratnoi zadache spektralnogo analiza”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 4(221):7 (2011), 91–99 | Zbl

[8] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982, 430 pp. | MR