Determining of continuous delay in a spectral problem for Chebyshev operator of the first kind
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 4, pp. 34-39
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A perturbed singular ordinary differential Chebyshev operator of the first kind with continuous delay is considered in this paper. For an arbitrary numerical sequence that does not differ much from eigenvalues sequence of an unperturbed operator, a problem is set to find the perturbation operator containing a continuous delay. A theorem of the existence of such an operator is being proved. An algorithm of finding the delay function in the form of a Fourier series is built and substantiated. The algorithm substantiation is based on the regularized traces theory.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
regularized trace, singular ordinary differential operator, eigenvalues.
                    
                  
                
                
                @article{VYURM_2022_14_4_a4,
     author = {A. I. Sedov},
     title = {Determining of continuous delay in a spectral problem for {Chebyshev} operator of the first kind},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {34--39},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a4/}
}
                      
                      
                    TY - JOUR AU - A. I. Sedov TI - Determining of continuous delay in a spectral problem for Chebyshev operator of the first kind JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2022 SP - 34 EP - 39 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a4/ LA - ru ID - VYURM_2022_14_4_a4 ER -
%0 Journal Article %A A. I. Sedov %T Determining of continuous delay in a spectral problem for Chebyshev operator of the first kind %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2022 %P 34-39 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a4/ %G ru %F VYURM_2022_14_4_a4
A. I. Sedov. Determining of continuous delay in a spectral problem for Chebyshev operator of the first kind. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 4, pp. 34-39. http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a4/
