Mots-clés : Sobolean-type equations.
@article{VYURM_2022_14_4_a3,
author = {K. V. Perevozchikova and N. A. Manakova},
title = {Study of the objectives of boundary control and final observation for the mathematical model of non-linear filtration},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {28--33},
year = {2022},
volume = {14},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a3/}
}
TY - JOUR AU - K. V. Perevozchikova AU - N. A. Manakova TI - Study of the objectives of boundary control and final observation for the mathematical model of non-linear filtration JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2022 SP - 28 EP - 33 VL - 14 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a3/ LA - ru ID - VYURM_2022_14_4_a3 ER -
%0 Journal Article %A K. V. Perevozchikova %A N. A. Manakova %T Study of the objectives of boundary control and final observation for the mathematical model of non-linear filtration %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2022 %P 28-33 %V 14 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a3/ %G ru %F VYURM_2022_14_4_a3
K. V. Perevozchikova; N. A. Manakova. Study of the objectives of boundary control and final observation for the mathematical model of non-linear filtration. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 4, pp. 28-33. http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a3/
[1] A.P. Oskolkov, “Nachalno-kraevye zadachi dlya uravnenii dvizheniya nelineinykh vyazkouprugikh zhidkostei”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 17, Zap. nauchn. sem. LOMI, 147, 1985, 110–119 | Zbl
[2] V.B. Amfilokhiev, Ya.I. Voitkunskii, N.P. Mazaeva, “Techeniya polimernykh rastvorov pri nalichii konvektivnykh uskorenii”, Trudy Leningradskogo korablestroitelnogo instituta, 96 (1975), 3–9
[3] G.A. Sviridyuk, V.O. Kazak, “Fazovoe prostranstvo odnoi obobschennoi modeli Oskolkova”, Sibirskii matematicheskii zhurnal, 44:5 (2003), 1124–1131 | MR | Zbl
[4] L.A. Kovaleva, A.S. Konkina, S.A. Zagrebina, “Stochastic Barenblatt-Zheltov-Kochina Model with Neumann Condition and Multipoint Initial-Final Value Condition”, Journal of Computational and Engineering Mathematics, 9:1 (2022), 24–34 | DOI | Zbl
[5] N.A. Manakova, “Matematicheskie modeli i optimalnoe upravlenie protsessami filtratsii i deformatsii”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 8:3 (2015), 5–24 | Zbl
[6] Zh.-L. Lions, Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987, 367 pp.
[7] G.A. Sviridyuk, I.N. Semenova, “Razreshimost neodnorodnoi zadachi dlya obobschennogo filtratsionnogo uravneniya Bussineska”, Differentsialnye uravneniya, 24:9 (1988), 1607–1611 | MR | Zbl