Geometric properties of the Bernatsky integral operator
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 4, pp. 12-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the geometric theory of complex variable functions, the study of mapping of classes of regular functions using various operators has now become an independent trend. The connection $f(z)\in S^{o}\Leftrightarrow g(z) = zf'(z) \in S^*$ of the classes $S^{o}$ and $S^*$ of convex and star-shaped functions can be considered as mapping using the differential operator $G[f](x) = zf'(z)$ of class $S^{o}$ to class $S^*$, that is, $G: S^{o} \to S^*$ or $G(S^{o}) = S^*$. The impetus for studying this range of issues was M. Bernatsky's assumption that the inverse operator $G^{-1}[f](x)$, which translates $S^* \to S^{o}$ and thereby “improves” the properties of functions, maps the entire class $S$ of single-leaf functions into itself. At present, a number of articles have been published which study the various integral operators. In particular, they establish sets of values of indicators included in these operators where operators map class $S$ or its subclasses to themselves or to other subclasses. This paper determines the values of the Bernatsky parameter included in the generalized integral operator, at which this operator transforms a subclass of star-shaped functions allocated by the condition $a < \mathrm{Re}\, zf'(z)/f(z) < b$ ($0 < a < 1 < b$), in the class $K(\gamma)$ of functions, almost convex in order $\gamma$. The results of the article summarize or reinforce previously known effects.
Keywords: geometric theory of functions of a complex variable, single-leaf functions, Bernatsky integral operator, star-shaped and almost convex functions.
Mots-clés : convex
@article{VYURM_2022_14_4_a1,
     author = {F. F. Mayer and M. G. Tastanov and A. A. Utemisova},
     title = {Geometric properties of the {Bernatsky} integral operator},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {12--19},
     year = {2022},
     volume = {14},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a1/}
}
TY  - JOUR
AU  - F. F. Mayer
AU  - M. G. Tastanov
AU  - A. A. Utemisova
TI  - Geometric properties of the Bernatsky integral operator
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 12
EP  - 19
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a1/
LA  - ru
ID  - VYURM_2022_14_4_a1
ER  - 
%0 Journal Article
%A F. F. Mayer
%A M. G. Tastanov
%A A. A. Utemisova
%T Geometric properties of the Bernatsky integral operator
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 12-19
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a1/
%G ru
%F VYURM_2022_14_4_a1
F. F. Mayer; M. G. Tastanov; A. A. Utemisova. Geometric properties of the Bernatsky integral operator. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 4, pp. 12-19. http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a1/

[1] F.G. Avkhadiev, L.A. Aksentev, “Osnovnye rezultaty v dostatochnykh usloviyakh odnolistnosti analiticheskikh funktsii”, UMN, 30:4(184) (1975), 3–60 | MR | Zbl

[2] M. Biernacki, “Sur L'Integrale des Fonctions Univalentes”, Bulletin Polish Acad. Sci. Math., Astron. et Phys., 8:1 (1960), 29–34 | MR | Zbl

[3] “Ob odnoi teoreme M. Bernatskogo v teorii odnolistnykh funktsii”, Ukr. matem. zhurn., 17:4 (1965), 63–71 | MR | Zbl

[4] “Integralnye preobrazovaniya v nekotorykh klassakh odnolistnykh funktsii”, Izv. vuzov. Matematika, 1980, no. 12, 45–49

[5] N.N. Pascu, “On a Univalence Criterion II”, Studia Universitatis Babes-Bolyai Mathematica, 6 (1985), 153–154 | MR

[6] D.V. Prokhorov, “Ob oblastyakh znachenii sistem funktsionalov i integrirovanii odnolistnykh funktsii”, Izv. vuzov. Matematika, 1986, no. 10, 33–39 | Zbl

[7] T.P. Sizhuk, “Poryadok zvezdoobraznosti operatora Bernardi v klasse zvezdoobraznykh funktsii”, Vestnik Stavropolskogo gosudarstvennogo universiteta, 2009, no. 4, 76–78

[8] A.V. Kazantsev, “Ob uravnenii Gakhova dlya operatora Bernatskogo”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 157, no. 2, 2015, 79–92 | MR | Zbl

[9] M.R. Kadieva, F.F. Maier, “Uslovie vypuklosti obobschennogo integrala Bernatskogo dlya odnogo podklassa zvezdoobraznykh funktsii”, Vestnik KazNPU im.Abaya. Seriya: fiziko-matematicheskie nauki, 69:1 (2020), 111–118

[10] M.O. Reade, “The Coefficients of Close-to-Convex Functions”, Duke Math. J., 23:3 (1956), 459–462 | DOI | MR | Zbl

[11] A. Renyi, “Some Remarks on Univalent Functions”, Bulgar. Akad. Nauk., Izv. Mat. Inst., 3 (1959), 111–119 | MR | Zbl

[12] Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR

[13] E.P. Merkes, D.J. Wright, “On the Univalence of a Certain Integral”, Proc. Amer. Math. Soc., 27:1 (1971), 97–100 | DOI | MR | Zbl