Geometric properties of the Bernatsky integral operator
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 4, pp. 12-19

Voir la notice de l'article provenant de la source Math-Net.Ru

In the geometric theory of complex variable functions, the study of mapping of classes of regular functions using various operators has now become an independent trend. The connection $f(z)\in S^{o}\Leftrightarrow g(z) = zf'(z) \in S^*$ of the classes $S^{o}$ and $S^*$ of convex and star-shaped functions can be considered as mapping using the differential operator $G[f](x) = zf'(z)$ of class $S^{o}$ to class $S^*$, that is, $G: S^{o} \to S^*$ or $G(S^{o}) = S^*$. The impetus for studying this range of issues was M. Bernatsky's assumption that the inverse operator $G^{-1}[f](x)$, which translates $S^* \to S^{o}$ and thereby “improves” the properties of functions, maps the entire class $S$ of single-leaf functions into itself. At present, a number of articles have been published which study the various integral operators. In particular, they establish sets of values of indicators included in these operators where operators map class $S$ or its subclasses to themselves or to other subclasses. This paper determines the values of the Bernatsky parameter included in the generalized integral operator, at which this operator transforms a subclass of star-shaped functions allocated by the condition $a \mathrm{Re}\, zf'(z)/f(z) b$ ($0 a 1 b$), in the class $K(\gamma)$ of functions, almost convex in order $\gamma$. The results of the article summarize or reinforce previously known effects.
Keywords: geometric theory of functions of a complex variable, single-leaf functions, Bernatsky integral operator, star-shaped and almost convex functions.
Mots-clés : convex
@article{VYURM_2022_14_4_a1,
     author = {F. F. Mayer and M. G. Tastanov and A. A. Utemisova},
     title = {Geometric properties of the {Bernatsky} integral operator},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {12--19},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a1/}
}
TY  - JOUR
AU  - F. F. Mayer
AU  - M. G. Tastanov
AU  - A. A. Utemisova
TI  - Geometric properties of the Bernatsky integral operator
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 12
EP  - 19
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a1/
LA  - ru
ID  - VYURM_2022_14_4_a1
ER  - 
%0 Journal Article
%A F. F. Mayer
%A M. G. Tastanov
%A A. A. Utemisova
%T Geometric properties of the Bernatsky integral operator
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 12-19
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a1/
%G ru
%F VYURM_2022_14_4_a1
F. F. Mayer; M. G. Tastanov; A. A. Utemisova. Geometric properties of the Bernatsky integral operator. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 4, pp. 12-19. http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a1/