Geometric properties of the Bernatsky integral operator
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 4, pp. 12-19
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the geometric theory of complex variable functions, the study of mapping of classes of regular functions using various operators has now become an independent trend. The connection $f(z)\in S^{o}\Leftrightarrow g(z) = zf'(z) \in S^*$ of the classes $S^{o}$ and $S^*$ of convex and star-shaped functions can be considered as mapping using the differential operator $G[f](x) = zf'(z)$ of class $S^{o}$ to class $S^*$, that is, $G: S^{o} \to S^*$ or $G(S^{o}) = S^*$. The impetus for studying this range of issues was M. Bernatsky's assumption that the inverse operator $G^{-1}[f](x)$, which translates $S^* \to S^{o}$ and thereby “improves” the properties of functions, maps the entire class $S$ of single-leaf functions into itself. 
At present, a number of articles have been published which study the various integral operators. In particular, they establish sets of values of indicators included in these operators where operators map class $S$ or its subclasses to themselves or to other subclasses. 
This paper determines the values of the Bernatsky parameter included in the generalized integral operator, at which this operator transforms a subclass of star-shaped functions allocated by the condition $a  \mathrm{Re}\, zf'(z)/f(z)  b$ ($0  a  1  b$), in the class $K(\gamma)$ of functions, almost convex in order $\gamma$. The results of the article summarize or reinforce previously known effects.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
geometric theory of functions of a complex variable, single-leaf functions, Bernatsky integral operator, star-shaped and almost convex functions.
Mots-clés : convex
                    
                  
                
                
                Mots-clés : convex
@article{VYURM_2022_14_4_a1,
     author = {F. F. Mayer and M. G. Tastanov and A. A. Utemisova},
     title = {Geometric properties of the {Bernatsky} integral operator},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {12--19},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a1/}
}
                      
                      
                    TY - JOUR AU - F. F. Mayer AU - M. G. Tastanov AU - A. A. Utemisova TI - Geometric properties of the Bernatsky integral operator JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2022 SP - 12 EP - 19 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a1/ LA - ru ID - VYURM_2022_14_4_a1 ER -
%0 Journal Article %A F. F. Mayer %A M. G. Tastanov %A A. A. Utemisova %T Geometric properties of the Bernatsky integral operator %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2022 %P 12-19 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a1/ %G ru %F VYURM_2022_14_4_a1
F. F. Mayer; M. G. Tastanov; A. A. Utemisova. Geometric properties of the Bernatsky integral operator. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 4, pp. 12-19. http://geodesic.mathdoc.fr/item/VYURM_2022_14_4_a1/
