Application of scanning tunneling microscopy for evaluation of the non-equilibrium state of grain boundaries in nickel subjected to high pressure torsion
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 79-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The goal of the study is to estimate the relative free energy of grain boundaries in nickel deformed by high-pressure torsion (HPT) using scanning tunneling microscopy. In the process of work, the following studies have been carried out. The technique has been developed for sample preparation of Ni samples subjected to severe plastic deformation (SPD) by the HPT method for subsequent studies by scanning tunneling microscopy, which provides an average value of the root-mean-square surface roughness of approximately 2 nm. Using scanning tunneling microscopy, images of the nickel surface structure have been obtained, which have been processed using the Gwyddion application program. As a result, the grain boundary profiles have been calculated, based on which the values of the dihedral angles at the bottom of the etching grooves have been calculated and the relative energies of the grain boundaries have been calculated. It has been established that after HPT deformation, the average relative energy of grain boundaries significantly exceeds the relative energy of grain boundaries of coarse-grained nickel with grain boundaries of recrystallization origin. Thus, because of HPT, non-equilibrium grain boundaries are formed in the samples. It has been shown that with an increase in the degree of HPT deformation, an increase in the average relative energy of grain boundaries occurs, which indicates an increase in the degree of their non-equilibrium. It has been demonstrated that SPD by the HPT method makes it possible to achieve a higher level of relative energy of grain boundaries than deformation by the equal-channel angular pressing (ECAP) method.
Keywords: Nickel, severe plastic deformation, scanning tunneling microscopy, relative free energy.
@article{VYURM_2022_14_3_a8,
     author = {E. V. Osinnikov and I. V. Blinov and A. Yu. Istomina and V. V. Popov},
     title = {Application of scanning tunneling microscopy for evaluation of the non-equilibrium state of grain boundaries in nickel subjected to high pressure torsion},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {79--85},
     year = {2022},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a8/}
}
TY  - JOUR
AU  - E. V. Osinnikov
AU  - I. V. Blinov
AU  - A. Yu. Istomina
AU  - V. V. Popov
TI  - Application of scanning tunneling microscopy for evaluation of the non-equilibrium state of grain boundaries in nickel subjected to high pressure torsion
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 79
EP  - 85
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a8/
LA  - ru
ID  - VYURM_2022_14_3_a8
ER  - 
%0 Journal Article
%A E. V. Osinnikov
%A I. V. Blinov
%A A. Yu. Istomina
%A V. V. Popov
%T Application of scanning tunneling microscopy for evaluation of the non-equilibrium state of grain boundaries in nickel subjected to high pressure torsion
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 79-85
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a8/
%G ru
%F VYURM_2022_14_3_a8
E. V. Osinnikov; I. V. Blinov; A. Yu. Istomina; V. V. Popov. Application of scanning tunneling microscopy for evaluation of the non-equilibrium state of grain boundaries in nickel subjected to high pressure torsion. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 79-85. http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a8/

[1] R.Z. Valiev, Y. Estrin, Z. Horita et al., “Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation”, JOM, 58 (2006), 33–39 | DOI

[2] R.Z. Valiev, V.Yu. Gertsman, O.A. Kaibyshev, “Grain boundary structure and properties under external influences”, Phys. Stat. Sol. (a), 97:1 (1986), 11–56 | DOI | MR

[3] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation”, Progress in Materials Science, 45:2 (2000), 103–189 | DOI

[4] A.A. Nazarov, A.E. Romanov, R.Z. Valiev, “On the structure, stress fields and energy of nonequilibrium grain boundaries”, Acta Metall. Mater., 41:4 (1993), 1033–1040 | DOI

[5] A.A. Nazarov, “Review: Nonequilibrium Grain Boundaries in Bulk Nanostructured Metals and their Recovery under the Influences of Heating and Cyclic Deformation”, Letters on Materials, 8:3 (2018), 372–381 | DOI

[6] Divinski S.V., Reglitz G., Golovin I.S. et al., “Effect of Heat Treatment on Diffusion, Internal Friction, Microstructure and Mechanical Properties of Ultra-Fine-Grained Nickel Severely Deformed by Equal-Channel Angular Pressing”, Acta Mater., 82 (2015), 11–21 | DOI

[7] Z. Horita, D.J. Smith, M. Nemoto et al., “Observations of Grain Boundary Structure in Submicrometer-Grained Cu and Ni Using High-Resolution Electron Microscopy”, Journal of Materials Research, 13:2 (1998), 446–450 | DOI

[8] V.V. Popov, “Mossbauer Spectroscopy of Interfaces in Metals.”, The Physics of Metals and Metallography, 113:13 (2012), 1257–1289 | DOI

[9] G. Wilde, S. Divinski, “Grain Boundaries and Diffusion Phenomena in Severely Deformed Materials”, Mater. Trans., 60:7 (2019), 1302–1315 | DOI

[10] V.V. Popov, E.V. Osinnikov, S.A. Murzinova et al., “Grain boundary diffusion of 57Co in nickel”, Journal of phase equilibria and diffusion, 41:2 (2020), 132–137 | DOI

[11] E.V. Osinnikov, S.A. Murzinova, A.Yu. Istomina i dr., “Zernogranichnaya diffuziya $^{57}$C$^0$ v ultramelkozernistom nikele, poluchennom intensivnoi plasticheskoi deformatsiei”, Fizika metallov i metallovedenie, 122:10 (2021), 1049–1053

[12] Y. Amouyal, E. Rabkin, Y. Mishin, “Correlation between Grain Boundary Energy and Geometry in Ni-rich NiAl”, Acta Materialia, 53:14 (2005), 3795–3805 | DOI

[13] C.C. Camilo, E.C. de Souza, P.L. Di Lorenzo, J.M.D. de Almeida Rollo, “Measurement of the grain boundary energy of commercially pure grade 2 titanium at high temperature”, Braz. J. Biom. Eng., 27:3 (2011), 175–181

[14] Y. Amouyal, E. Rabkin, “A Scanning Force Microscopy Study of Grain Boundary Energy in Copper Subjected to Equal Channel Angular Pressing”, Acta Materialia, 55:20 (2007), 6681–6689 | DOI

[15] S.A. Saltykov, Stereometricheskaya metallografiya, Metallurgiya, M., 1976, 271 pp.

[16] P.V. Kuznetsov, I.V. Petrakova, T.V. Rakhmatullina i dr., “Primenenie skaniruyuschei tunnelnoi mikroskopii dlya kharakteristiki zerenno-subzerennoi struktury SMK nikelya posle nizkotemperaturnogo otzhiga”, Zavodskaya laboratoriya. Diagnostika materialov, 78:4 (2012), 26–34

[17] P.V. Kuznetsov, T.V. Rakhmatulina, I.V. Belyaeva, A.V. Korznikov, “Energiya vnutrennikh granits razdela kak kharakteristika evolyutsii struktury ultramelkozernistykh medi i nikelya posle otzhiga”, Fizika metallov i metallovedenie, 118:3 (2017), 255–262