Illumination system for sub-diffraction resolution microscopy
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 68-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Illumination scheme for superresolution microscopy is developed. The scheme accomplishes dark filed illumination with a laser light source including spatial coherence suppression. The scheme allows to observe nanoparticles with a size smaller than 50 nm. This is necessary to get higher resolution in the previously proposed method of superresolution microscopy (Near field Optical Random Microscopy - NORM). This method is based on real-time video processing of a nanoparticles Brownian motion those are located near the object surface. The method of vertical coordinate measurement is demonstrated. This method is based on astigmatic nanoparticle imaging. Three-dimensional distributions of suspended nanoparticles are obtained. Vertical resolution better than 200 nm and lateral resolution better than 100 nm are demonstrated.
Keywords: microscopy, nanoscopy, near-field microscopy, super-resolution, particle trajectory analysis, video processing.
Mots-clés : nanoparticles
@article{VYURM_2022_14_3_a7,
     author = {S. A. Asselborn and E. S. Zatsepin and D. S. Isakov and A. M. Gerasimov and D. G. Pikhulya and Yu. V. Miklyaev},
     title = {Illumination system for sub-diffraction resolution microscopy},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {68--78},
     year = {2022},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a7/}
}
TY  - JOUR
AU  - S. A. Asselborn
AU  - E. S. Zatsepin
AU  - D. S. Isakov
AU  - A. M. Gerasimov
AU  - D. G. Pikhulya
AU  - Yu. V. Miklyaev
TI  - Illumination system for sub-diffraction resolution microscopy
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 68
EP  - 78
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a7/
LA  - ru
ID  - VYURM_2022_14_3_a7
ER  - 
%0 Journal Article
%A S. A. Asselborn
%A E. S. Zatsepin
%A D. S. Isakov
%A A. M. Gerasimov
%A D. G. Pikhulya
%A Yu. V. Miklyaev
%T Illumination system for sub-diffraction resolution microscopy
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 68-78
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a7/
%G ru
%F VYURM_2022_14_3_a7
S. A. Asselborn; E. S. Zatsepin; D. S. Isakov; A. M. Gerasimov; D. G. Pikhulya; Yu. V. Miklyaev. Illumination system for sub-diffraction resolution microscopy. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 68-78. http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a7/

[1] E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung”, Archiv für mikroskopische Anatomie, 9:1 (1873), 413–468 | DOI

[2] E. Betzig, J.K. Trautman, T.D. Harris et al., “Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale”, Science, 251:5000 (1991), 1468–1470 | DOI

[3] A. Hartschuh, E.J. Sanchez, X.S. Xie, L. Novotny, “High-Resolution Near-Field Raman Microscopy of Single-Walled Carbon Nanotubes”, Physical Review Letters, 90:9 (2003), 095503 | DOI

[4] S.W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy”, Optics letters, 19:11 (1994), 780–782 | DOI

[5] A.A. Klimov, Sposob fluorestsentnoi nanoskopii, Pat. 2305270 Rossiiskaya Federatsiya, No 2005115052, zayavl. 18.05.2005, opubl. 27.11.2006, 2005

[6] S.T. Hess, T.P.K. Girirajan, M.D. Mason, “Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy”, Biophysical journal, 91:11 (2006), 4258–4272 | DOI

[7] M.J. Rust, M. Bates, X. Zhuang, “Sub-Diffraction-Limit Imaging by Stochastic Optical Reconstruction Microscopy (STORM)”, Nature methods, 3:10 (2006), 793–796 | DOI

[8] M.G.L. Gustafsson, “Surpassing the Lateral Resolution Limit by a Factor of Two using Structured Illumination Microscopy”, Journal of microscopy, 198:2 (2000), 82–87 | DOI

[9] S. Namiki, Y. Ikegaya, “US Patent No. 3013467, 1957”, Biological pharmaceutical bulletin, 32:1 (2009), 1–9 | DOI

[10] M.G.L. Gustafsson, “Nonlinear Structured-Illumination Microscopy: Wide-Field Fluorescence Imaging with Theoretically Unlimited Resolution”, Proceedings of the National Academy of Sciences, 102:37 (2005), 13081–13086 | DOI

[11] Z. Jacob, L.V. Alekseyev, E. Narimanov, “Optical Hyperlens: Far-Field Imaging Beyond the Diffraction Limit”, Optics express, 14:18 (2006), 8247–8256 | DOI

[12] J. Lee, B. Hong, W. Kim et al., “Near-field Focusing and Magnification Through Self-Assembled Nanoscale Spherical Lenses”, Nature, 460:7254 (2009), 498–501 | DOI

[13] Z. Wang, W. Guo, L. Li, “Optical Virtual Imaging at 50 nm Lateral Resolution with a White-Light Nanoscope”, Nature communication, 2 (2011), 218 | DOI

[14] S.A. Jones, S.H. Shim, J. He, X. Zhuang, “Fast, Three-Dimensional Super-Resolution Imaging of Live Cells”, Nature methods, 8:6 (2011), 499–508 | DOI

[15] Small A., Stahlheber S., “Fluorophore Localization Algorithms for Super-Resolution Microscopy”, Nature methods, 11:3 (2014), 267–279 | DOI

[16] S. Wolter, A. Löschberger, T. Holm et al., “rapidSTORM: Accurate, Fast Open-Source Software for Localization Microscopy”, Nature methods, 9:11 (2012), 1040–1041 | DOI

[17] K. Schücker, T. Holm, C. Franke et al., “Elucidation of Synaptonemal Complex Organization by Super-Resolution Imaging with Isotropic Resolution”, Proceedings of the National Academy of Sciences, 112:7 (2015), 2029–2033 | DOI

[18] Nikić I., Plass T., Schraidt O. et al., “Minimal Tags for Rapid Dual-Color Live-Cell Labeling and Super-Resolution Microscopy”, Angewandte Chemie international edition, 53:8 (2014), 2245–2249 | DOI

[19] I. Nikić, T. Plass, O. Schraidt et al., “Mapping Local Field Enhancements at Nanostructured Metal Surfaces by Second-Harmonic Generation Induced in the Near Field”, Journal of microscopy, 229:2 (2008), 233–239 | DOI | MR

[20] A. Horneber, K. Braun, J. Rogalski et al., “Nonlinear Optical Imaging of Single Plasmonic Nanoparticles with 30 nm Resolution”, Physical Chemistry Chemical Physics, 17:33 (2015), 21288–21293 | DOI

[21] K.A. Willets, “Super-Resolution Imaging of SERS Hot Spots”, Chemical Society Reviews, 43:11 (2014), 3854–3864 | DOI

[22] S. Ayas, G. Cinar, A.D. Ozkan et al., “Label-Free Nanometer-Resolution Imaging of Biological Architectures Through Surface Enhanced Raman Scattering”, Scientific reports, 3:1 (2013), 1–8 | DOI

[23] Yu.V. Miklyaev, S.A. Asselborn, Sposob polucheniya izobrazheniya povyshennoi razreshayuschei sposobnosti, Pat. 2,319,948 Rossiiskaya Federatsiya, U.S. Patent No. 2009,0116,024 (Priority date 7 April 2006)

[24] M.K. Cheezum, W.F. Walker, W.H. Guilford, “Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles”, Biophysical Journal, 81 (2001), 2378–2388 | DOI