Two-parameter method of determinining stress intensity factor $K_{I}$ of crack-like defects using holographic interferometry
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 60-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new method has been developed for finding the stress intensity coefficient and the nominal stress $\sigma_{ox}$ for a plate with a crack-like (elliptical) defect. As an experimental basis, the patterns of bands of absolute path difference obtained on the basis of the method of holographic interferometry are taken. Using Favre ratios and approximate decomposition of stress components for the plane case, the stress intensity coefficient and the nominal stress $\sigma_{ox}$ are determined. The difference of the proposed method is in a more accurate representation of the stress tensor in the vicinity of the vertex of a crack-like defect. Such representation allows one to take the geometry of the defect into account. The values of the correction function calculated by the proposed method in the formula for theoretical determining of the intensity factor have been higher than those obtained by previously used methods. This indicates a possible underestimation of the magnitude of the intensity factor when using the previously proposed methods. In addition to using more precise formulas for the stress tensor, the approach implies considering the nominal stress and the intensity factor as independent parameters. Full consideration of the crack geometry and loading features is very difficult from a mathematical point of view; however, this property of the method allows partially compensating for the simplifications of the stress tensor analytic expressions. Also, this method makes it possible to determine the main stresses and the intensity of stresses in the vicinity of the vertex of the defect. The obtained formulas agree well with experimental results.
Keywords: fracture mechanics, stress intensity factors, stress state of a plate with an inclined elliptical cutout, method of holographic interferometry.
@article{VYURM_2022_14_3_a6,
     author = {V. L. Dilman and P. B. Utkin},
     title = {Two-parameter method of determinining stress intensity factor $K_{I}$ of crack-like defects using holographic interferometry},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {60--67},
     year = {2022},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a6/}
}
TY  - JOUR
AU  - V. L. Dilman
AU  - P. B. Utkin
TI  - Two-parameter method of determinining stress intensity factor $K_{I}$ of crack-like defects using holographic interferometry
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 60
EP  - 67
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a6/
LA  - ru
ID  - VYURM_2022_14_3_a6
ER  - 
%0 Journal Article
%A V. L. Dilman
%A P. B. Utkin
%T Two-parameter method of determinining stress intensity factor $K_{I}$ of crack-like defects using holographic interferometry
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 60-67
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a6/
%G ru
%F VYURM_2022_14_3_a6
V. L. Dilman; P. B. Utkin. Two-parameter method of determinining stress intensity factor $K_{I}$ of crack-like defects using holographic interferometry. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 60-67. http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a6/

[1] N.A. Makhutov, Deformatsionnye kriterii razrusheniya i raschet elementov konstruktsii na prochnost, Mashinostroenie, M., 1981, 272 pp.

[2] A.Ya. Krasovskii, Khrupkost metallov pri nizkikh temperaturakh, Naukova dumka, Kiev, 1980, 337 pp.

[3] O.A. Bakshi, N.L. Zaitsev, S.Yu. Googe i dr., “Opredelenie koeffitsientov intensivnosti napryazhenii KI i KII metodom fotouprugosti”, Zavodskaya laboratoriya, 46:3 (1980), 280–282

[4] L.L. Sitnikov, A.A. Ostsemin, S.A. Deniskin, A.A. Zagrebalov, “Opredelenie koeffitsienta intensivnosti napryazhenii KI metodom golograficheskoi fotouprugosti”, Zavodskaya laboratoriya, 48:9 (1982), 81–83

[5] A.A. Ostsemin, S.A. Deniskin, L.L. Sitnikov, “Opredelenie koeffitsienta intensivnosti napryazhenii metodami fotouprugogo modelirovaniya”, Problemy prochnosti, 1990, no. 1, 33–37

[6] A.A. Ostsemin, “Dvukhparametricheskoe opredelenie koeffitsientov intensivnosti napryazhenii dlya naklonnoi treschiny metodom golograficheskoi interferometrii”, Zavodskaya laboratoriya, 57:12 (1991), 45–48

[7] Ostsemin A.A., Deniskin S.A., Sitnikov L.L. i dr., “Opredelenie napryazhennogo sostoyaniya tel s defektami metodom golograficheskoi interferometrii”, Problemy prochnosti, 1982, no. 10, 77–81

[8] I.A. Razumovskii, Interferentsionno-opticheskie metody mekhaniki deformiruemogo tverdogo tela, uchebnoe posobie, Izd-vo MGTU, M., 2007, 235 pp.

[9] A.Ya. Aleksandrov, M.Kh. Akhmetzyanov, Polyarizatsionno-opticheskie metody mekhaniki deformiruemogo tela, Nauka, M., 1973, 576 pp.

[10] A.A. Ostsemin, P.B. Utkin, “Napryazhenno-deformirovannoe sostoyanie i koeffitsient intensivnosti napryazhenii v okrestnosti treschinopodobnykh defektov pri dvukhosnom rastyazhenii plastiny”, PMTF, 55:6(328) (2014), 162–172 | MR