Classification of periodic differential equations by degrees of non-roughniss
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 52-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A differential equation of the form $x' = f(t, x)$ with the right part $f(t, x)$ having continuous derivatives up to $r$-th order inclusive, $1$-periodic in $t$, we identify with the function $f$ and consider as an element of the Banach space $E^{r}$ of such functions with the $C^{r}$-norm. The equation $f$ defines a dynamical system on a cylindrical phase space. An equation $f$ is called rough if any equation close enough to it is topologically equivalent to $f$, that is, it has the same topological structure of the phase portrait. An equation $f$ has the $k$-th degree of non-roughness if any non-rough equation sufficiently close to it either has a degree of non-roughness less than $k$, or is topologically equivalent to $f$. The paper describes the set of equations of the $k$-th degree of non-roughness ($k < r$), shows that it form an embedded submanifold of codimension $k$ in $E^{r}$, are open and everywhere dense in the set of all non-rough equations that do not have a degree of non-roughness less than $k$.
Keywords: periodic differential equation, cylindrical phase space, structural stability, degree of structural instability, bifurcation manifold.
@article{VYURM_2022_14_3_a5,
     author = {V. Sh. Roitenberg},
     title = {Classification of periodic differential equations by degrees of non-roughniss},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {52--59},
     year = {2022},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a5/}
}
TY  - JOUR
AU  - V. Sh. Roitenberg
TI  - Classification of periodic differential equations by degrees of non-roughniss
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 52
EP  - 59
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a5/
LA  - ru
ID  - VYURM_2022_14_3_a5
ER  - 
%0 Journal Article
%A V. Sh. Roitenberg
%T Classification of periodic differential equations by degrees of non-roughniss
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 52-59
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a5/
%G ru
%F VYURM_2022_14_3_a5
V. Sh. Roitenberg. Classification of periodic differential equations by degrees of non-roughniss. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 52-59. http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a5/

[1] A.A. Andronov, E.A. Leontovich, “K teorii izmeneniya kachestvennoi struktury razbieniya ploskosti na traektorii”, Doklady AN SSSR, 21:9 (1938), 427–430

[2] A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, Teoriya bifurkatsii dinamicheskikh sistem na ploskosti, Nauka, M., 1967, 487 pp. | MR

[3] M. Peixoto, “Structural Stability on Two-Dimensional Manifolds”, Topology, 1:2 (1962), 101–120 | DOI | MR | Zbl

[4] S.Kh. Aranson, “Ob otsutstvii nezamknutykh ustoichivykh po Puassonu polutraektorii i traektorii, dvoyakoasimptoticheskikh k dvoinomu predelnomu tsiklu u dinamicheskikh sistem pervoi stepeni negrubosti na orientiruemykh dvumernykh mnogoobraziyakh”, Mat. Sbornik, 76(118):2 (1968), 214–230 | Zbl

[5] J. Sotomayor, “Generic one-parameter families of vector fields on two-dimensional manifolds”, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 43 (1974), 5–46 | DOI | MR

[6] S.Kh. Aranson, “O neplotnosti polei konechnoi stepeni negrubosti v prostranstve negrubykh vektornykh polei na zamknutykh dvumernykh mnogoobraziyakh”, UMN, 43:1 (1988), 191–192 | MR

[7] C. Robinson, “Structural stability of vector fields”, Annals of Mathematics. Second Series, 99:1 (1974), 154–175 | DOI | MR | Zbl

[8] S. Hayashi, “Connecting Invariant Manifolds and the Solution of $C^1$-Stability and $\Omega$-Stability Conjectures for Flows”, Annals of Mathematics. Second Series, 145:1 (1997), 81–137 | DOI | MR | Zbl

[9] R. Abraham, S. Smale, “Non-genericity of $\Omega$-stability”, Global Analysis, Proc. of Symposia in Pure Mathematics, 14, 1970, 5–8 | DOI | MR | Zbl

[10] L. Shvarts, Analiz, v. 2, Mir, M., 1972, 528 pp.

[11] A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966, 568 pp. | MR

[12] A.N. Kolmogorov, S.V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968, 496 pp. | MR