@article{VYURM_2022_14_3_a5,
author = {V. Sh. Roitenberg},
title = {Classification of periodic differential equations by degrees of non-roughniss},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {52--59},
year = {2022},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a5/}
}
TY - JOUR AU - V. Sh. Roitenberg TI - Classification of periodic differential equations by degrees of non-roughniss JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2022 SP - 52 EP - 59 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a5/ LA - ru ID - VYURM_2022_14_3_a5 ER -
%0 Journal Article %A V. Sh. Roitenberg %T Classification of periodic differential equations by degrees of non-roughniss %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2022 %P 52-59 %V 14 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a5/ %G ru %F VYURM_2022_14_3_a5
V. Sh. Roitenberg. Classification of periodic differential equations by degrees of non-roughniss. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 52-59. http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a5/
[1] A.A. Andronov, E.A. Leontovich, “K teorii izmeneniya kachestvennoi struktury razbieniya ploskosti na traektorii”, Doklady AN SSSR, 21:9 (1938), 427–430
[2] A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, Teoriya bifurkatsii dinamicheskikh sistem na ploskosti, Nauka, M., 1967, 487 pp. | MR
[3] M. Peixoto, “Structural Stability on Two-Dimensional Manifolds”, Topology, 1:2 (1962), 101–120 | DOI | MR | Zbl
[4] S.Kh. Aranson, “Ob otsutstvii nezamknutykh ustoichivykh po Puassonu polutraektorii i traektorii, dvoyakoasimptoticheskikh k dvoinomu predelnomu tsiklu u dinamicheskikh sistem pervoi stepeni negrubosti na orientiruemykh dvumernykh mnogoobraziyakh”, Mat. Sbornik, 76(118):2 (1968), 214–230 | Zbl
[5] J. Sotomayor, “Generic one-parameter families of vector fields on two-dimensional manifolds”, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 43 (1974), 5–46 | DOI | MR
[6] S.Kh. Aranson, “O neplotnosti polei konechnoi stepeni negrubosti v prostranstve negrubykh vektornykh polei na zamknutykh dvumernykh mnogoobraziyakh”, UMN, 43:1 (1988), 191–192 | MR
[7] C. Robinson, “Structural stability of vector fields”, Annals of Mathematics. Second Series, 99:1 (1974), 154–175 | DOI | MR | Zbl
[8] S. Hayashi, “Connecting Invariant Manifolds and the Solution of $C^1$-Stability and $\Omega$-Stability Conjectures for Flows”, Annals of Mathematics. Second Series, 145:1 (1997), 81–137 | DOI | MR | Zbl
[9] R. Abraham, S. Smale, “Non-genericity of $\Omega$-stability”, Global Analysis, Proc. of Symposia in Pure Mathematics, 14, 1970, 5–8 | DOI | MR | Zbl
[10] L. Shvarts, Analiz, v. 2, Mir, M., 1972, 528 pp.
[11] A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966, 568 pp. | MR
[12] A.N. Kolmogorov, S.V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968, 496 pp. | MR