Classification of periodic differential equations by degrees of non-roughniss
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 52-59
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A differential equation of the form $x' = f(t, x)$ with the right part $f(t, x)$ having continuous derivatives up to $r$-th order inclusive, $1$-periodic in $t$, we identify with the function $f$ and consider as an element of the Banach space $E^{r}$ of such functions with the $C^{r}$-norm. The equation $f$ defines a dynamical system on a cylindrical phase space. An equation $f$ is called rough if any equation close enough to it is topologically equivalent to $f$, that is, it has the same topological structure of the phase portrait. An equation $f$ has the $k$-th degree of non-roughness if any non-rough equation sufficiently close to it either has a degree of non-roughness less than $k$, or is topologically equivalent to $f$. The paper describes the set of equations of the $k$-th degree of non-roughness ($k  r$), shows that it form an embedded submanifold of codimension $k$ in $E^{r}$, are open and everywhere dense in the set of all non-rough equations that do not have a degree of non-roughness less than $k$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
periodic differential equation, cylindrical phase space, structural stability, degree of structural instability, bifurcation manifold.
                    
                  
                
                
                @article{VYURM_2022_14_3_a5,
     author = {V. Sh. Roitenberg},
     title = {Classification of periodic differential equations by degrees of non-roughniss},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {52--59},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a5/}
}
                      
                      
                    TY - JOUR AU - V. Sh. Roitenberg TI - Classification of periodic differential equations by degrees of non-roughniss JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2022 SP - 52 EP - 59 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a5/ LA - ru ID - VYURM_2022_14_3_a5 ER -
%0 Journal Article %A V. Sh. Roitenberg %T Classification of periodic differential equations by degrees of non-roughniss %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2022 %P 52-59 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a5/ %G ru %F VYURM_2022_14_3_a5
V. Sh. Roitenberg. Classification of periodic differential equations by degrees of non-roughniss. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 52-59. http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a5/
