Analysis of the class of hydrodynamic systems
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 45-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solvability of the Cauchy-Dirichlet problem for the generalized homogeneous model of the dynamics of the high-order viscoelastic incompressible Kelvin-Voigt fluid is considered. In the study, the theory of semilinear equations of the Sobolev type was used. The indicated problem for the system of differential equations in partial derivatives is reduced to the Cauchy problem for the indicated type of the equation. The theorem on the existence of the unique solution of this problem, which is a quasi-stationary trajectory, is proved, and its phase space is described.
Keywords: phase space, viscoelastic incompressible fluid.
Mots-clés : Sobolev type equation
@article{VYURM_2022_14_3_a4,
     author = {O. P. Matveeva and T. G. Sukacheva},
     title = {Analysis of the class of hydrodynamic systems},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {45--51},
     year = {2022},
     volume = {14},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a4/}
}
TY  - JOUR
AU  - O. P. Matveeva
AU  - T. G. Sukacheva
TI  - Analysis of the class of hydrodynamic systems
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 45
EP  - 51
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a4/
LA  - en
ID  - VYURM_2022_14_3_a4
ER  - 
%0 Journal Article
%A O. P. Matveeva
%A T. G. Sukacheva
%T Analysis of the class of hydrodynamic systems
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 45-51
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a4/
%G en
%F VYURM_2022_14_3_a4
O. P. Matveeva; T. G. Sukacheva. Analysis of the class of hydrodynamic systems. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 45-51. http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a4/

[1] A.P. Oskolkov, “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina-Foigta i zhidkostei Oldroita”, Trudy matem. in-ta AN SSSR, 179, 1988, 126–164

[2] G.A. Sviridyuk, T.G. Sukacheva, “Zadacha Koshi dlya odnogo klassa polulineinykh uravnenii tipa Soboleva”, Sib. matem. zhurnal, 31:5 (1990), 109–119 | MR | Zbl

[3] T.G. Sukacheva, “Ob odnoi modeli dvizheniya neszhimaemoi vyazkouprugoi zhidkosti Kelvina-Foigta nenulevogo poryadka”, Differentsialnye uravneniya, 33:4 (1997), 552–557 | MR | Zbl

[4] O.P. Matveeva, “Kvazistatsionarnye traektorii zadachi Teilora dlya modeli neszhimaemoi vyazkouprugoi zhidkosti nenulevogo poryadka”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 16(192):5 (2010), 39–47 | Zbl

[5] T.G. Sukacheva, O.P. Matveeva, “Zadacha Teilora dlya modeli neszhimaemoi vyazkouprugoi zhidkosti nulevogo poryadka”, Differetsialnye uravneniya, 51:6 (2015), 771–779 | Zbl

[6] G.A. Sviridyuk, T.G. Sukacheva, “Nekotorye matematicheskie zadachi dinamiki vyazkouprugikh neszhimaemykh sred”, Vestnik MaGU, 2005, no. 8, 5–33

[7] O.P. Matveeva, T.G. Sukacheva, “Odnorodnaya model neszhimaemoi vyazkouprugoi zhidkosti nenulevogo poryadka”, Vestnik YuUrGU. Seriya «Matematika. Mekhanika. Fizika», 8:3 (2016), 22–30 | Zbl