Reconstruction of dynamically distorted signals based on the theory of optimal control of solutions for Sobolev type equations in the spaces of stochastic processes
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 38-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper investigates the solvability of the optimal control problem for solutions of stochastic Sobolev type equations. It is shown that the optimal dynamic measurement problem can be considered as an optimal control problem. To do this, the mathematical model of dynamic measurements is reduced to a stochastic Sobolev type equation of the first order in the spaces of stochastic processes. The article presents theorems on the existence of a unique classical and strong solutions of the Sobolev type equation with initial condition of Showalter-Sidorov in the spaces of stochastic processes. The theorem of the unique solvability of the optimal control problem for such equation is proved. The abstract results obtained for Sobolev type equation are applied to the problem of restoring a dynamically distorted signal as an optimal dynamic measurement.
Keywords: dynamic measurements, additive “noise”, strong solutions, optimal control problem.
Mots-clés : Sobolev type equations
@article{VYURM_2022_14_3_a3,
     author = {A. A. Zamyshlyaeva and O. N. Tsyplenkova},
     title = {Reconstruction of dynamically distorted signals based on the theory of optimal control of solutions for {Sobolev} type equations in the spaces of stochastic processes},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {38--44},
     year = {2022},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a3/}
}
TY  - JOUR
AU  - A. A. Zamyshlyaeva
AU  - O. N. Tsyplenkova
TI  - Reconstruction of dynamically distorted signals based on the theory of optimal control of solutions for Sobolev type equations in the spaces of stochastic processes
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 38
EP  - 44
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a3/
LA  - ru
ID  - VYURM_2022_14_3_a3
ER  - 
%0 Journal Article
%A A. A. Zamyshlyaeva
%A O. N. Tsyplenkova
%T Reconstruction of dynamically distorted signals based on the theory of optimal control of solutions for Sobolev type equations in the spaces of stochastic processes
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 38-44
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a3/
%G ru
%F VYURM_2022_14_3_a3
A. A. Zamyshlyaeva; O. N. Tsyplenkova. Reconstruction of dynamically distorted signals based on the theory of optimal control of solutions for Sobolev type equations in the spaces of stochastic processes. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 38-44. http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a3/

[1] A.L. Shestakov, G.A. Sviridyuk, “On the measurement of the «white noise»”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 27(286):13 (2012), 99–108 | Zbl

[2] S.A. Zagrebina, A.V. Keller, “Nekotorye obobscheniya zadachi Shouoltera-Sidorova dlya modelei sobolevskogo tipa”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 8:2 (2015), 5–23 | Zbl

[3] A.L. Shestakov, A.A. Zamyshlyaeva, N.A. Manakova i dr., “Vosstanovlenie dinamicheski iskazhennogo signala na osnove teorii optimalnykh dinamicheskikh izmerenii”, Avtomatika i telemekhanika, 2021, no. 12, 125–137 | Zbl

[4] G.A. Sviridyuk, V.E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operator, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 216 pp. | MR

[5] A.A. Zamyshlyaeva, N.A. Manakova, O.N. Tsyplenkova, “Optimal Control in Linear Sobolev Type Mathematical Models”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 13:1 (2020), 5–27 | Zbl

[6] Yu.E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London–Dordrecht–Heidelberg–N.Y., 2011, 436 pp. | MR | Zbl

[7] G.A. Sviridyuk, A.A. Zamyshlyaeva, S.A. Zagrebina, “Multipoint initial-final problem for one class of Sobolev type models of higher order with additive «white noise»”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 11:3 (2018), 103–117 | Zbl

[8] Zh.L. Lions, Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp.