Reconstruction of dynamically distorted signals based on the theory of optimal control of solutions for Sobolev type equations in the spaces of stochastic processes
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 38-44
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper investigates the solvability of the optimal control problem for solutions of stochastic Sobolev type equations. It is shown that the optimal dynamic measurement problem can be considered as an optimal control problem. To do this, the mathematical model of dynamic measurements is reduced to a stochastic Sobolev type equation of the first order in the spaces of stochastic processes. The article presents theorems on the existence of a unique classical and strong solutions of the Sobolev type equation with initial condition of Showalter-Sidorov in the spaces of stochastic processes. The theorem of the unique solvability of the optimal control problem for such equation is proved. The abstract results obtained for Sobolev type equation are applied to the problem of restoring a dynamically distorted signal as an optimal dynamic measurement.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
dynamic measurements, additive “noise”, strong solutions, optimal control problem.
Mots-clés : Sobolev type equations
                    
                  
                
                
                Mots-clés : Sobolev type equations
@article{VYURM_2022_14_3_a3,
     author = {A. A. Zamyshlyaeva and O. N. Tsyplenkova},
     title = {Reconstruction of dynamically distorted signals based on the theory of optimal control of solutions for {Sobolev} type equations in the spaces of stochastic processes},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {38--44},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a3/}
}
                      
                      
                    TY - JOUR AU - A. A. Zamyshlyaeva AU - O. N. Tsyplenkova TI - Reconstruction of dynamically distorted signals based on the theory of optimal control of solutions for Sobolev type equations in the spaces of stochastic processes JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2022 SP - 38 EP - 44 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a3/ LA - ru ID - VYURM_2022_14_3_a3 ER -
%0 Journal Article %A A. A. Zamyshlyaeva %A O. N. Tsyplenkova %T Reconstruction of dynamically distorted signals based on the theory of optimal control of solutions for Sobolev type equations in the spaces of stochastic processes %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2022 %P 38-44 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a3/ %G ru %F VYURM_2022_14_3_a3
A. A. Zamyshlyaeva; O. N. Tsyplenkova. Reconstruction of dynamically distorted signals based on the theory of optimal control of solutions for Sobolev type equations in the spaces of stochastic processes. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 38-44. http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a3/
