Eigenvalues and eigenfunctions of the Laplace operator in a square and in a circle with a Wentzel boundary condition
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 17-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recently, in the mathematical literature, the Wentzel boundary condition has been considered from two points of view. In the first case, let us call it a classical case, this condition is an equation containing a linear combination of the values of the function and its derivatives at the boundary of the domain. Meanwhile, the function itself also satisfies an equation with an elliptic operator given in the domain. In the second, neoclassical case, the Wentzel condition is an equation with the Laplace-Beltrami operator defined on the boundary of the domain, understood as a smooth compact Riemannian manifold without an edge; and the external effect is represented by the normal derivative of the function specified in the domain. The paper considers the properties of the Laplace operator with the Wentzel boundary condition in the neoclassical sense. In particular, eigenvalues and eigenfunctions of the Laplace operator are constructed for a system of Wentzel equations in a circle and in a square.
Keywords: Laplace operator, Wentzel dynamic condition.
@article{VYURM_2022_14_3_a1,
     author = {N. S. Goncharov},
     title = {Eigenvalues and eigenfunctions of the {Laplace} operator in a square and in a circle with a {Wentzel} boundary condition},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {17--22},
     year = {2022},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a1/}
}
TY  - JOUR
AU  - N. S. Goncharov
TI  - Eigenvalues and eigenfunctions of the Laplace operator in a square and in a circle with a Wentzel boundary condition
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 17
EP  - 22
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a1/
LA  - ru
ID  - VYURM_2022_14_3_a1
ER  - 
%0 Journal Article
%A N. S. Goncharov
%T Eigenvalues and eigenfunctions of the Laplace operator in a square and in a circle with a Wentzel boundary condition
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 17-22
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a1/
%G ru
%F VYURM_2022_14_3_a1
N. S. Goncharov. Eigenvalues and eigenfunctions of the Laplace operator in a square and in a circle with a Wentzel boundary condition. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 17-22. http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a1/

[1] G.R. Goldstein, “Derivation and Physical Interpretation of General Boundary Conditions”, Advances in Differential Equations, 11:14 (2006), 457–480 | MR | Zbl

[2] A. Favini, G.R. Goldstein, J.A. Goldstein, S. Romanelli, “The heat equation with generalized Wentzell boundary condition”, J. Evol. Equ., 2:1 (2002), 1–19 | DOI | MR | Zbl

[3] A. Favini, G.R. Goldstein, J.A. Goldstein, S. Romanelli, “Classification of general Wentzell boundary conditions for fourth order operators in one space dimension”, Journal of Mathematical Analysis and. Applications, 333:1 (2007), 219–235 | DOI | MR | Zbl

[4] G.M. Coclite, A. Favini, C.G. Gal et al., “The Role of Wentzell Boundary Conditions in Linear and Nonlinear Analysis”, Advances in Nonlinear Analysis: Theory, Methods and Applications, 3 (2009), 279–292 | MR

[5] D.E. Apushinskaya, A.I. Nazarov, “Nachalno-kraevaya zadacha s granichnym usloviem Venttselya dlya nedivergentnykh parabolicheskikh uravnenii”, Algebra i analiz, 6:6 (1994), 1–29

[6] N.S. Goncharov, S.A. Zagrebina, G.A. Sviridyuk, “Non-uniqueness of solutions to boundary value problems with Wentzell condition”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 14:4 (2021), 102–105 | Zbl

[7] G.A. Sviridyuk, S.A. Zagrebina, “Zadacha Shouoltera-Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 3:1 (2010), 104–125 | Zbl

[8] A.D. Venttsel, “O granichnykh usloviyakh dlya mnogomernykh diffuzionnykh protsessov”, Teoriya veroyatnostei i ee primeneniya, 4:2 (1959), 172–185

[9] V. Feller, “Odnomernye diffuzionnye protsessy”, Matematika, 2:2 (1958), 119–146

[10] V.V. Lukyanov, A.I. Nazarov, “Reshenie zadachi Venttselya dlya uravneniya Laplasa i Gelmgoltsa s pomoschyu povtornykh potentsialov”, Zap. nauchn. sem. POMI, 250, 1998, 203–218 | Zbl

[11] A. Favini, G.R. Goldstein, J.A. Goldstein, S. Romanelli, “$C_0$-Semigroups Generated by Second order Differential Operators with General Wentzell Boundary Conditions”, Proc. Amer. Math. Soc., 128:7 (2000), 1981–1989 | DOI | MR | Zbl

[12] R. Denk, M. Kunze, D. Ploss, “The Bi-Laplacian with Wentzell Boundary Conditions on Lipschitz Domains”, Integral Equations and Operator Theory, 93:2 (2021), 13, 26 pp. | DOI | MR | Zbl