Eigenvalues and eigenfunctions of the Laplace operator in a square and in a circle with a Wentzel boundary condition
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 17-22
Voir la notice de l'article provenant de la source Math-Net.Ru
Recently, in the mathematical literature, the Wentzel boundary condition has been considered from two points of view. In the first case, let us call it a classical case, this condition is an equation containing a linear combination of the values of the function and its derivatives at the boundary of the domain. Meanwhile, the function itself also satisfies an equation with an elliptic operator given in the domain. In the second, neoclassical case, the Wentzel condition is an equation with the Laplace-Beltrami operator defined on the boundary of the domain, understood as a smooth compact Riemannian manifold without an edge; and the external effect is represented by the normal derivative of the function specified in the domain. The paper considers the properties of the Laplace operator with the Wentzel boundary condition in the neoclassical sense. In particular, eigenvalues and eigenfunctions of the Laplace operator are constructed for a system of Wentzel equations in a circle and in a square.
Keywords:
Laplace operator, Wentzel dynamic condition.
@article{VYURM_2022_14_3_a1,
author = {N. S. Goncharov},
title = {Eigenvalues and eigenfunctions of the {Laplace} operator in a square and in a circle with a {Wentzel} boundary condition},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {17--22},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a1/}
}
TY - JOUR AU - N. S. Goncharov TI - Eigenvalues and eigenfunctions of the Laplace operator in a square and in a circle with a Wentzel boundary condition JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2022 SP - 17 EP - 22 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a1/ LA - ru ID - VYURM_2022_14_3_a1 ER -
%0 Journal Article %A N. S. Goncharov %T Eigenvalues and eigenfunctions of the Laplace operator in a square and in a circle with a Wentzel boundary condition %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2022 %P 17-22 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a1/ %G ru %F VYURM_2022_14_3_a1
N. S. Goncharov. Eigenvalues and eigenfunctions of the Laplace operator in a square and in a circle with a Wentzel boundary condition. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 17-22. http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a1/