@article{VYURM_2022_14_3_a1,
author = {N. S. Goncharov},
title = {Eigenvalues and eigenfunctions of the {Laplace} operator in a square and in a circle with a {Wentzel} boundary condition},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {17--22},
year = {2022},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a1/}
}
TY - JOUR AU - N. S. Goncharov TI - Eigenvalues and eigenfunctions of the Laplace operator in a square and in a circle with a Wentzel boundary condition JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2022 SP - 17 EP - 22 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a1/ LA - ru ID - VYURM_2022_14_3_a1 ER -
%0 Journal Article %A N. S. Goncharov %T Eigenvalues and eigenfunctions of the Laplace operator in a square and in a circle with a Wentzel boundary condition %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2022 %P 17-22 %V 14 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a1/ %G ru %F VYURM_2022_14_3_a1
N. S. Goncharov. Eigenvalues and eigenfunctions of the Laplace operator in a square and in a circle with a Wentzel boundary condition. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 3, pp. 17-22. http://geodesic.mathdoc.fr/item/VYURM_2022_14_3_a1/
[1] G.R. Goldstein, “Derivation and Physical Interpretation of General Boundary Conditions”, Advances in Differential Equations, 11:14 (2006), 457–480 | MR | Zbl
[2] A. Favini, G.R. Goldstein, J.A. Goldstein, S. Romanelli, “The heat equation with generalized Wentzell boundary condition”, J. Evol. Equ., 2:1 (2002), 1–19 | DOI | MR | Zbl
[3] A. Favini, G.R. Goldstein, J.A. Goldstein, S. Romanelli, “Classification of general Wentzell boundary conditions for fourth order operators in one space dimension”, Journal of Mathematical Analysis and. Applications, 333:1 (2007), 219–235 | DOI | MR | Zbl
[4] G.M. Coclite, A. Favini, C.G. Gal et al., “The Role of Wentzell Boundary Conditions in Linear and Nonlinear Analysis”, Advances in Nonlinear Analysis: Theory, Methods and Applications, 3 (2009), 279–292 | MR
[5] D.E. Apushinskaya, A.I. Nazarov, “Nachalno-kraevaya zadacha s granichnym usloviem Venttselya dlya nedivergentnykh parabolicheskikh uravnenii”, Algebra i analiz, 6:6 (1994), 1–29
[6] N.S. Goncharov, S.A. Zagrebina, G.A. Sviridyuk, “Non-uniqueness of solutions to boundary value problems with Wentzell condition”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 14:4 (2021), 102–105 | Zbl
[7] G.A. Sviridyuk, S.A. Zagrebina, “Zadacha Shouoltera-Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 3:1 (2010), 104–125 | Zbl
[8] A.D. Venttsel, “O granichnykh usloviyakh dlya mnogomernykh diffuzionnykh protsessov”, Teoriya veroyatnostei i ee primeneniya, 4:2 (1959), 172–185
[9] V. Feller, “Odnomernye diffuzionnye protsessy”, Matematika, 2:2 (1958), 119–146
[10] V.V. Lukyanov, A.I. Nazarov, “Reshenie zadachi Venttselya dlya uravneniya Laplasa i Gelmgoltsa s pomoschyu povtornykh potentsialov”, Zap. nauchn. sem. POMI, 250, 1998, 203–218 | Zbl
[11] A. Favini, G.R. Goldstein, J.A. Goldstein, S. Romanelli, “$C_0$-Semigroups Generated by Second order Differential Operators with General Wentzell Boundary Conditions”, Proc. Amer. Math. Soc., 128:7 (2000), 1981–1989 | DOI | MR | Zbl
[12] R. Denk, M. Kunze, D. Ploss, “The Bi-Laplacian with Wentzell Boundary Conditions on Lipschitz Domains”, Integral Equations and Operator Theory, 93:2 (2021), 13, 26 pp. | DOI | MR | Zbl