Modeling of curved surfaces in gas dynamics problems
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 2, pp. 59-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a method for setting initial conditions on the boundary of an arbitrarily-shaped body on a rectangular grid is presented. A spherical volume of compressed gas, formed as a result of an explosion above the Earth's surface, is chosen as the body under consideration. Since the cells of the computational grid are rectangular and the contour is curvilinear, fractional cells are used to set the conditions on the boundary. The pressure and density inside the sphere are known and distributed uniformly throughout the volume. The parameters on the boundary are proposed to be calculated in proportion to the volume that the body takes in each cell the contour crosses. Such a volume can be found by integrating over the region cut off by the curve from a rectangular grid cell. The algorithm has been tested on a numerical solution to the problem of the gas sphere expansion by the large-particle method. Since the boundary of the sphere is a contact discontinuity, graphs of the position of density isolines in the process of expansion of the sphere are presented. The calculation results have shown that the described mechanism ensures the preservation of the spherical boundary during the calculation process: the deviation from the values corresponding with the circle equation has equaled less than 1%.
Keywords: mathematical modeling, gas dynamics, boundary conditions, fractional cells.
@article{VYURM_2022_14_2_a5,
     author = {D. D. Zaripova and Yu. M. Kovalev},
     title = {Modeling of curved surfaces in gas dynamics problems},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {59--63},
     year = {2022},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a5/}
}
TY  - JOUR
AU  - D. D. Zaripova
AU  - Yu. M. Kovalev
TI  - Modeling of curved surfaces in gas dynamics problems
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 59
EP  - 63
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a5/
LA  - ru
ID  - VYURM_2022_14_2_a5
ER  - 
%0 Journal Article
%A D. D. Zaripova
%A Yu. M. Kovalev
%T Modeling of curved surfaces in gas dynamics problems
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 59-63
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a5/
%G ru
%F VYURM_2022_14_2_a5
D. D. Zaripova; Yu. M. Kovalev. Modeling of curved surfaces in gas dynamics problems. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 2, pp. 59-63. http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a5/

[1] M.A. Rich, A method for Eulerian fluid dynamics, Los Alamos Scientific Lab. Rept. No LAMS-2826, 1963

[2] R.A. Jentry, R.E. Martin, B.J. Daly, “An Eulerian Differencing Method for Unsteady Compressible Flow Problems”, Journal of Computational Physics, 1:1 (1966), 87–118 | DOI

[3] I.V. Otroschenko, R.P. Fedorenko, “Raznostnyi metod rascheta techeniya gaza v kanale proizvolnoi formy”, Chislennye metody mekhaniki sploshnoi sredy, 1974, no. 1, 98–111

[4] R. Magnus, H. Yoshihara, “Inviscid transonic flow over airfoil”, AIAA Journal, 8:12 (1970), 2157–2162 | DOI

[5] Yu.M. Davydov, “Raschet obtekaniya tel proizvolnoi formy metodom «krupnykh chastits»”, Zh. vychisl. matem. i matem. fiziki, 11:4 (1971), 1056–1063

[6] O.M. Belotserkovskii, Yu.M. Davydov, Metod krupnykh chastits v gazovoi dinamike, Nauka, M., 1982, 391 pp.

[7] Yu.M. Kovalev, E.E. Pigasov, “Matematicheskaya model gazovzvesi s khimicheskimi prevrascheniyami v priblizhenii parnykh vzaimodeistvii”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Matematicheskoe modelirovanie i programmirovanie, 7:3 (2014), 40–49 | Zbl