@article{VYURM_2022_14_2_a4,
author = {B. Kh. Turmetov and V. V. Karachik},
title = {Neumann boundary condition for a nonlocal biharmonic equation},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {51--58},
year = {2022},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a4/}
}
TY - JOUR AU - B. Kh. Turmetov AU - V. V. Karachik TI - Neumann boundary condition for a nonlocal biharmonic equation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2022 SP - 51 EP - 58 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a4/ LA - ru ID - VYURM_2022_14_2_a4 ER -
%0 Journal Article %A B. Kh. Turmetov %A V. V. Karachik %T Neumann boundary condition for a nonlocal biharmonic equation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2022 %P 51-58 %V 14 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a4/ %G ru %F VYURM_2022_14_2_a4
B. Kh. Turmetov; V. V. Karachik. Neumann boundary condition for a nonlocal biharmonic equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 2, pp. 51-58. http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a4/
[1] A.M. Nakhushev, Uravneniya matematicheskoi biologii, Vyssh. shk., M., 1995, 301 pp.
[2] A.A. Andreev, “Ob analogakh klassicheskikh kraevykh zadach dlya odnogo differentsialnogo uravneniya vtorogo poryadka s otklonyayuschimsya argumentom”, Differents. uravneniya, 40:8 (2004), 1126–1128 | MR | Zbl
[3] A. Ashyralyev, A.M. Sarsenbi, “Well-posedness of a parabolic equation with involution”, Numerical Functional Analysis and Optimization, 38:10 (2017), 1295–1304 | DOI | MR | Zbl
[4] A. Ashyralyev, A.M. Sarsenbi, “Well-posedness of an elliptic equation with involution”, Electronic Journal of Differential Equations, 2015, no. 284, 1–8 | MR
[5] V.V. Karachik, A.M. Sarsenbi, B.Kh. Turmetov, “On the solvability of the main boundary value problems for a nonlocal Poisson equation”, Turkish Journal of Mathematics, 43:3 (2019), 1604–1625 | DOI | MR | Zbl
[6] M. Kirane, N. Al-Salti, “Inverse problems for a nonlocal wave equation with an involution perturbation”, Journal of Nonlinear Sciences and Applications, 9:3 (2016), 1243–1251 | DOI | MR | Zbl
[7] A.L. Skubachevskii, “Nonclassical boundary value problems. I”, Journal of Mathematical Sciences, 155:2 (2008), 199–334 | DOI | MR | Zbl
[8] A.L. Skubachevskii, “Nonclassical boundary-value problems. II”, Journal of Mathematical Sciences, 166:4 (2010), 377–561 | DOI | MR | Zbl
[9] D. Przeworska-Rolewicz, “Some boundary value problems with transformed argument”, Commentationes Mathematicae, 17:2 (1974), 451–457 | MR | Zbl
[10] V.V. Karachik, “Ob odnoi zadache tipa Neimana dlya bigarmonicheskogo uravneniya”, Matematicheskie trudy, 19:2 (2016), 86–108 | Zbl
[11] M.A. Sadybekov, A.A. Dukenbayeva, “On boundary value problems of the Samarskii-Ionkin type for the Laplace operator in a ball”, Complex Variables and Elliptic Equations, 2020, 1–15 | MR
[12] V.V. Karachik, B.Kh. Turmetov, “On solvability of some nonlocal boundary value problems for biharmonic equation”, Mathematica Slovaca, 70:2 (2020), 329–342 | DOI | MR | Zbl
[13] V.V. Karachik, B.Kh. Turmetov, “Solvability of one nonlocal Dirichlet problem for the Poisson equation”, Novi Sad Journal of Mathematics, 50:1 (2020), 67–88 | Zbl
[14] B.Kh. Turmetov, V.V. Karachik, “O zadache Dirikhle dlya nelokalnogo poligarmonicheskogo uravneniya”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Fizika, 13:2 (2021), 37–45 | Zbl
[15] V.V. Karachik, “Greens function of Dirichlet problem for biharmonic equation in the ball”, Complex Variables and Elliptic Equations, 64:9 (2019), 1500–1521 | DOI | MR | Zbl
[16] V.V. Karachik, “Funktsii Grina zadach Nave i Rike-Neimana dlya bigarmonicheskogo uravneniya v share”, Differentsialnye uravneniya, 57:5 (2021), 673–686 | Zbl
[17] Karachik V., Green's functions of some boundary value problems for the biharmonic equation. Complex Variables and Elliptic Equations, 2021 (Online) | MR
[18] V. Karachik, “Dirichlet and Neumann boundary value problems for the polyharmonic equation in the unit ball”, Mathematics, 9:16 (2021), 1907 | DOI | MR
[19] V.V. Karachik, B.K. Turmetov, “On the Green's function for the third boundary value problem”, Siberian Advances in Mathematics, 29:1 (2019), 32–43 | DOI | MR
[20] M.A. Sadybekov, B.T. Torebek, B.K. Turmetov, “Representation of Green's function of the Neumann problem for a multi-dimensional ball”, Complex Variables and Elliptic Equations, 61:1 (2016), 104–123 | DOI | MR | Zbl