Mots-clés : parabolic equation
@article{VYURM_2022_14_2_a3,
author = {A. V. Ryazhskikh},
title = {Thermal conductivity in a homogeneous strip with a linear change in thickness under boundary conditions of the first kind},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {44--50},
year = {2022},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a3/}
}
TY - JOUR AU - A. V. Ryazhskikh TI - Thermal conductivity in a homogeneous strip with a linear change in thickness under boundary conditions of the first kind JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2022 SP - 44 EP - 50 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a3/ LA - ru ID - VYURM_2022_14_2_a3 ER -
%0 Journal Article %A A. V. Ryazhskikh %T Thermal conductivity in a homogeneous strip with a linear change in thickness under boundary conditions of the first kind %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2022 %P 44-50 %V 14 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a3/ %G ru %F VYURM_2022_14_2_a3
A. V. Ryazhskikh. Thermal conductivity in a homogeneous strip with a linear change in thickness under boundary conditions of the first kind. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 2, pp. 44-50. http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a3/
[1] V.S. Avduevskii, B.M. Galitseiskii, G.A. Glebov i dr., Osnovy teploperedachi v avitsionnoi i raketno-kosmicheskoi tekhnike, Mashinostroenie, M., 1992, 518 pp.
[2] P.V. Antonov, V.S. Berdnikov, “Zavisimost fronta kristallizatsii i skorosti rosta slitka Bridzhmena-Stokbargera”, PMTF, 53:6 (2012), 65–77 | Zbl
[3] D. Lentzon, A.G. Boudouvis, V.T. Karathanos, G. Xanthopoulos, “A moving boundary model for fruit isothermal drying and shrinkage: An optimization method for water diffusivity and peel resistance estimation”, J. of Food Eng., 263 (2019), 299–310 | DOI
[4] A.Yu. Baranov, T.A. Malysheva, “Modelirovanie nestatsionarnogo teploobmena v kriomeditsine”, Vestnik Mezhdunarodnoi Akademii Kholoda, 2000, no. 2, 38–41
[5] I.N. Bekman, Matematika diffuzii, OntoPrint, M., 2016, 399 pp.
[6] J. Crank, Free and moving boundary problems, Clerendon Press, Oxford, 1984, 425 pp. | MR
[7] E.M. Kartashov, Analiticheskie metody v teorii teploprovodnosti tverdykh tel, Vyssh. shk., M., 2001, 549 pp.
[8] A.G. Rubin, “Reshenie kraevykh zadach nestatsionarnoi teploprovodnosti v oblasti s dvizhuscheisya granitsei pri nalichii istochnika teploty”, Chelyabinskii fiziko-matematicheskii zhurnal, 3:1(2) (1994), 108–111 | Zbl
[9] P.A. Vlasov, “Vliyanie ravnomernogo dvizheniya granitsy na temperaturnoe pole poluprostranstva, podverzhennogo nagrevu vneshnim teplovym potokom”, Nauka i obrazovanie. MGTU im. N.E. Baumana, 2014, no. 8, 101–109
[10] I. Sneddon, Preobrazovanie Fure, Izd-vo inostr. lit., M., 1955, 668 pp.
[11] M.N. Ozisik, Heat Conduction, John Willey Soons, Inc, NY, 1993, 692 pp.
[12] G. Dech, Rukovodstvo k prakticheskomu primeneniyu preobrazovaniya Laplasa i Z-preobrazovaniya, Nauka, M., 1971, 288 pp.
[13] A.V. Ryazhskikh, “Sedimentatsiya malokontsentrirovannoi vzvesi stoksovskikh chastits v peremeshivaemom sloe s dvizhuscheisya svobodnoi granitsy”, ZhTF, 89:8 (2019), 1150–1157