Thermal conductivity in a homogeneous strip with a linear change in thickness under boundary conditions of the first kind
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 2, pp. 44-50
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An accurate analytical solution has been obtained in quadratures of the initial boundary value problem for one-dimensional unsteady-state heat-transfer equation with boundary conditions of the first kind for an endless strip, while one of its boundaries is moving at a constant preset speed decreasing the strip thickness. Preliminarily, through the self-similar change of the spatial variable, the initial system of equations has been reduced to a fixed boundary system, to which the method of partitioning of dependent variables has been applied. The requirement that the coefficients before the first-order derivative must be equal to zero for the self-similar derivative and separately included function in a modified equation in partial derivative of parabolic type has allowed to determine the general structure of the solution containing an unknown function. This function is presented as a superposition of two potentials, which are proportionally connected using the self-similar derivative, what has made it possible to simplify the modified equation and to apply the classical Fourier sine integral transformation for its solution. The computation results has shown the dynamics of the local temperature profile along the changing strip thickness at a constant speed, while the kinetics of the average integral temperature shows (unlike with the case of absence of boundary movement) the presence of the maximum that shifts with the growth of the ratio of the boundary movement speed to the heat transfer speed by the conductivity to the fixed boundary. This is explained by the intensive heating up of the strip material in the conditions of the decreasing of its thickness; meanwhile, with the increase in the boundary movement speed (or with the use of material with reduced thermal conductivity), it approaches the fixed boundary. By assuming that the strip thickness is a parameter, the problem in the initial wording is solved using the method of the one-sided Laplace integral time transformation. This solution, when using the linear dependence of parameter on time, correlates with the obtained accurate solution, and therefore it can be used for the preliminary evaluation of the required characteristics of a process under consideration.
Keywords: analytical solution, strip, movable boundary, boundary conditions of the first kind.
Mots-clés : parabolic equation
@article{VYURM_2022_14_2_a3,
     author = {A. V. Ryazhskikh},
     title = {Thermal conductivity in a homogeneous strip with a linear change in thickness under boundary conditions of the first kind},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {44--50},
     year = {2022},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a3/}
}
TY  - JOUR
AU  - A. V. Ryazhskikh
TI  - Thermal conductivity in a homogeneous strip with a linear change in thickness under boundary conditions of the first kind
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 44
EP  - 50
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a3/
LA  - ru
ID  - VYURM_2022_14_2_a3
ER  - 
%0 Journal Article
%A A. V. Ryazhskikh
%T Thermal conductivity in a homogeneous strip with a linear change in thickness under boundary conditions of the first kind
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 44-50
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a3/
%G ru
%F VYURM_2022_14_2_a3
A. V. Ryazhskikh. Thermal conductivity in a homogeneous strip with a linear change in thickness under boundary conditions of the first kind. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 2, pp. 44-50. http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a3/

[1] V.S. Avduevskii, B.M. Galitseiskii, G.A. Glebov i dr., Osnovy teploperedachi v avitsionnoi i raketno-kosmicheskoi tekhnike, Mashinostroenie, M., 1992, 518 pp.

[2] P.V. Antonov, V.S. Berdnikov, “Zavisimost fronta kristallizatsii i skorosti rosta slitka Bridzhmena-Stokbargera”, PMTF, 53:6 (2012), 65–77 | Zbl

[3] D. Lentzon, A.G. Boudouvis, V.T. Karathanos, G. Xanthopoulos, “A moving boundary model for fruit isothermal drying and shrinkage: An optimization method for water diffusivity and peel resistance estimation”, J. of Food Eng., 263 (2019), 299–310 | DOI

[4] A.Yu. Baranov, T.A. Malysheva, “Modelirovanie nestatsionarnogo teploobmena v kriomeditsine”, Vestnik Mezhdunarodnoi Akademii Kholoda, 2000, no. 2, 38–41

[5] I.N. Bekman, Matematika diffuzii, OntoPrint, M., 2016, 399 pp.

[6] J. Crank, Free and moving boundary problems, Clerendon Press, Oxford, 1984, 425 pp. | MR

[7] E.M. Kartashov, Analiticheskie metody v teorii teploprovodnosti tverdykh tel, Vyssh. shk., M., 2001, 549 pp.

[8] A.G. Rubin, “Reshenie kraevykh zadach nestatsionarnoi teploprovodnosti v oblasti s dvizhuscheisya granitsei pri nalichii istochnika teploty”, Chelyabinskii fiziko-matematicheskii zhurnal, 3:1(2) (1994), 108–111 | Zbl

[9] P.A. Vlasov, “Vliyanie ravnomernogo dvizheniya granitsy na temperaturnoe pole poluprostranstva, podverzhennogo nagrevu vneshnim teplovym potokom”, Nauka i obrazovanie. MGTU im. N.E. Baumana, 2014, no. 8, 101–109

[10] I. Sneddon, Preobrazovanie Fure, Izd-vo inostr. lit., M., 1955, 668 pp.

[11] M.N. Ozisik, Heat Conduction, John Willey Soons, Inc, NY, 1993, 692 pp.

[12] G. Dech, Rukovodstvo k prakticheskomu primeneniyu preobrazovaniya Laplasa i Z-preobrazovaniya, Nauka, M., 1971, 288 pp.

[13] A.V. Ryazhskikh, “Sedimentatsiya malokontsentrirovannoi vzvesi stoksovskikh chastits v peremeshivaemom sloe s dvizhuscheisya svobodnoi granitsy”, ZhTF, 89:8 (2019), 1150–1157