Mots-clés : parabolic equation, point source.
@article{VYURM_2022_14_2_a2,
author = {L. V. Neustroeva},
title = {On uniqueness in the problems of determining point sources in mathematical models of heat and mass transfer},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {31--43},
year = {2022},
volume = {14},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a2/}
}
TY - JOUR AU - L. V. Neustroeva TI - On uniqueness in the problems of determining point sources in mathematical models of heat and mass transfer JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2022 SP - 31 EP - 43 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a2/ LA - en ID - VYURM_2022_14_2_a2 ER -
%0 Journal Article %A L. V. Neustroeva %T On uniqueness in the problems of determining point sources in mathematical models of heat and mass transfer %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2022 %P 31-43 %V 14 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a2/ %G en %F VYURM_2022_14_2_a2
L. V. Neustroeva. On uniqueness in the problems of determining point sources in mathematical models of heat and mass transfer. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 2, pp. 31-43. http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a2/
[1] G.I. Marchuk, Mathematical Models in Environmental Problems, Elsevier Science Publishers, Amsterdam, 1986, 216 pp. | MR
[2] M.N. Ozisik, H.R.B. Orlande, Inverse Heat Transfer: Fundamentals and Applications, Taylor Francis, New York, 2000, 330 pp. | MR
[3] O.M. Alifanov, E.A. Artyukhin, A.V. Nenarokomov, Obratnye zadachi v issledovanii slozhnogo teploobmena, Yanus-K, M., 2009, 299 pp.
[4] E.A. Panasenko, A.V. Starchenko, “Chislennoe reshenie nekotorykh obratnykh zadach s razlichnymi tipami istochnikov atmosfernogo zagryazneniya”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2008, no. 2(3), 47–55
[5] V.V. Penenko, “Variatsionnye metody usvoeniya dannykh i obratnye zadachi dlya izucheniya atmosfery, okeana i okruzhayuschei sredy”, Sib. zhurn. vychisl. Matem., 12:4 (2009), 421–434 | MR | Zbl
[6] C.Y. Yang, “Solving the two-dimensional inverse heat source problem through the linear least-squares error method”, International Journal of Heat and Mass Transfer, 41:2 (1998), 393–398 | DOI | Zbl
[7] A.V. Starchenko, E.A. Panasenko, “Parallelnye algoritmy dlya resheniya obratnykh zadach perenosa primesi”, Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 14:5(40) (2010), 133–139
[8] A.V. Mamonov, Y-H.R. Tsai, “Point Source Identification in Nonlinear Advection-Diffusion-Reaction Systems”, Inverse Problems, 29:3 (2013), 26 | DOI | MR | Zbl
[9] X. Deng, Y. Zhao, J. Zou, “On Linear Finite Elements for Simultaneously Recovering Source Location and Intensity”, Int. J. Numer. Anal. Model., 10:3 (2013), 588–602 | MR | Zbl
[10] N. Verdiere, G. Joly-Blanchard, L. Denis-Vidal, “Identifiability and Identification of a Pollution Source in a River by Using a Semi-Discretized Model”, Applied Mathematics and Computation, 221 (2013), 1–9 | DOI | MR | Zbl
[11] M. Mazaheri, J.M.V. Samani, H.M.V. Samani, “Mathematical Model for Pollution Source Identification in Rivers”, Environmental Forensics, 16:4 (2015), 310–321 | DOI
[12] J. Su, “Heat Source Estimation with the Conjugate Gradient Method in Inverse Linear Diffusive Problems”, J. Braz. Soc. Mech. Sci., 23:3 (2001), 321–334 | DOI
[13] A.J.S. Neto, M.N. Oziik, “Two-dimensional Inverse Heat Conduction Problem of Estimating the Timevarying Strength of a Line Heat Source”, Journal of Applied Physics, 71:11 (1992), 53–57 | DOI
[14] E. Milnes, P. Perrochet, “Simultaneous Identification of a Single Pollution Point-Source Location and Contamination Time under Known Flow Field Conditions”, Advances in Water Resources, 30:12 (2007), 2439–2446 | DOI
[15] F.B. Liu, “A Modified Genetic Algorithm for Solving the Inverse Heat Transfer Problem of Estimating Plan Heat Source”, International Journal of Heat and Mass Transfer, 51:15–16 (2008), 3745–3752 | DOI | Zbl
[16] Penenko A. V., Rakhmetullina S. Zh., “Algoritmy lokalizatsii istochnikov zagryazneniya atmosfernogo vozdukha na osnove dannykh avtomatizirovannoi sistemy ekologicheskogo monitoringa”, Sib. elektron. matem. Izv., 10 (2013), C.35–C.54
[17] A. El Badia, T. Ha-Duong, A. Hamdi, “Identification of a Point Source in a Linear Advection-Dispersion-Reaction Equation: Application to a Pollution Source Problem”, Inverse Problems, 21:3 (2005), 1121–1136 | DOI | MR | Zbl
[18] A. El Badia, A. Hamdi, “Inverse Source Problem in an Advection-Dispersion-Reaction System: Application to Water Pollution”, Inverse Problems, 23:5 (2007), 2103–2120 | DOI | MR | Zbl
[19] A. El Badia, T. Ha-Duong, “Inverse Source Problem for the Heat Equation: Application to a Pollution Detection problem”, J. Inverse Ill-Posed Probl., 10:6 (2002), 585–599 | DOI | MR | Zbl
[20] A. El Badia, T. Ha-Duong, “An Inverse Source Problem in Potential Analysis”, Inverse Problems, 16:3 (2000), 651–663 | DOI | MR | Zbl
[21] L. Ling, T. Takeuchi, “Point Sources Identification Problems for Heat Equations”, Commun. Comput. Phys., 5:5 (2009), 897–913 | MR | Zbl
[22] S.G. Pyatkov, E.I. Safonov, “Point Sources Recovering Problems for the One-Dimensional Heat Equation”, Journal of Advanced Research in Dynamical and Control Systems, 11:01 (2019), 496–510 http://www.jardcs.org/abstract.php?id=100#
[23] S.G. Pyatkov, L.V. Neustroeva, “On Some Asymptotic Representations of Solutions to Elliptic Equations and Their Applications”, Complex Variables and Elliptic Equations, 66:6–7 (2021), 964–987 | DOI | MR | Zbl
[24] H. Triebel, Interpolation Theory. Function Spaces. Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 528 pp. | MR
[25] H. Amann, “Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems”, Function Spaces, Differential Operators and Nonlinear Analysis, Teubner-Texte Math., 133, Teubner, Stuttgart, 1993, 9–126 | DOI | MR | Zbl
[26] Neustroeva L. V., Pyatkov S. G., “On Recovering a Point Source in Some Heat and Mass Transfer Problems”, AIP Conference Proceedings, 2328 (2021), 020006 | DOI
[27] R. Denk, R.M. Hieber, J. Prüss, “Fourier Multipliers and Problems of Elliptic and Parabolic Type”, Mem. Amer. Math. Soc., 166, no. 788, 2003 | MR
[28] Y.-K. Hsu, T.M. Holsen, P.K. Hopke, “Comparison of Hybrid Receptor Models to Locate PCB Sources in Chicago”, Atmospheric Environment, 37 (2003), 545–562 | DOI
[29] E. Safonov, S. Pyatkov, “On Some Classes of Inverse Problems on Determining the Source Function”, Proc. of the 8th Scientific Conference on Information Technologies for Intelligent Decision Making Support, ITIDS2020, Atlantis Press, 2020, 242–248
[30] V.S. Vladimirov, V.V. Zharinov, Uravneniya matematicheskoi fiziki, ucheb. dlya studentov vuzov, Fizmatlit, M., 2004, 398 pp.
[31] A.G. Sveshnikov, A.N. Bogolyubov, V.V. Kravtsov, Lektsii po matematicheskoi fizike, Izd-vo MGU, M., 1993, 351 pp. | MR
[32] G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1944, 804 pp. | MR | Zbl
[33] M.F. Kozhevnikova, V.V. Levenets, I.L. Rolik, “The Pollution Source Identification: Computational Approach”, Problems of Atomic Science and Technology, 2011, no. 6, 149–156
[34] L. Zhou, P.K. Hopke, W. Liu, “Comparison of Two Trajectory Based Models for Locating Particle Sources for Two Rural New York sites”, Atmospheric Environment, 38:13 (2004), 1955–1963 | DOI
[35] Y.-J. Han, T.M. Holsen, P.K. Hopke et al., “Identification of Source Location for Atmospheric Dry Deposition of Heavy Metals During Yellow-Sand Events in Seoul, Korea in 1998 Using Hybrid Receptor Models”, Atmospheric Environment, 38 (1998), 5353–5361 | DOI
[36] N.J. Pekney, C.I. Davidson, L. Zhow, P.K. Hopke, “Application of PSCF and CPF to PMF-Modeled Sources of PM$_{2.5}$ in Pittsburgh”, Aerosol Science and Technology, 40:10 (2006), 952–961 | DOI
[37] E.C. Tichmarsh, Theory of Functions, Oxford University press, Oxford, 1939, 454 pp. | MR