On uniqueness in the problems of determining point sources in mathematical models of heat and mass transfer
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 2, pp. 31-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of determining point sources for mathematical models of heat and mass transfer. The values of a solution (concentrations) at some points lying inside the domain are taken as overdetermination conditions. A second-order parabolic equation is considered, on the right side of which there is a linear combination of the Dirac delta functions $\delta(x-x_i)$ with coefficients that depend on time and characterize the intensities of sources. Several different problems are considered, including the problem of determining the intensities of sources if their locations are given. In this case, we present the theorem of uniqueness of solutions, the proof of which is based on the Phragmén-Lindelöf theorem. Next, in the model case, we consider the problem of simultaneous determining the intensities of sources and their locations. The conditions on the number of measurements (the ovedetermination conditions) are described which ensure that a solution is uniquely determined. Examples are given to show the accuracy of the results. This problem arises when solving environmental problems, first of all, the problems of determining the sources of pollution in a water basin or atmosphere. The results are important when developing numerical algorithms for solving the problem. In the literature, such problems are solved numerically by reducing the problem to an optimal control problem and minimizing the corresponding objective functional. The examples show that this method is not always correct since the objective functional can have a significant number of minima.
Keywords: eat and mass transfer, uniqueness, inverseproblem
Mots-clés : parabolic equation, point source.
@article{VYURM_2022_14_2_a2,
     author = {L. V. Neustroeva},
     title = {On uniqueness in the problems of determining point sources in mathematical models of heat and mass transfer},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {31--43},
     year = {2022},
     volume = {14},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a2/}
}
TY  - JOUR
AU  - L. V. Neustroeva
TI  - On uniqueness in the problems of determining point sources in mathematical models of heat and mass transfer
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 31
EP  - 43
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a2/
LA  - en
ID  - VYURM_2022_14_2_a2
ER  - 
%0 Journal Article
%A L. V. Neustroeva
%T On uniqueness in the problems of determining point sources in mathematical models of heat and mass transfer
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 31-43
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a2/
%G en
%F VYURM_2022_14_2_a2
L. V. Neustroeva. On uniqueness in the problems of determining point sources in mathematical models of heat and mass transfer. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 2, pp. 31-43. http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a2/

[1] G.I. Marchuk, Mathematical Models in Environmental Problems, Elsevier Science Publishers, Amsterdam, 1986, 216 pp. | MR

[2] M.N. Ozisik, H.R.B. Orlande, Inverse Heat Transfer: Fundamentals and Applications, Taylor Francis, New York, 2000, 330 pp. | MR

[3] O.M. Alifanov, E.A. Artyukhin, A.V. Nenarokomov, Obratnye zadachi v issledovanii slozhnogo teploobmena, Yanus-K, M., 2009, 299 pp.

[4] E.A. Panasenko, A.V. Starchenko, “Chislennoe reshenie nekotorykh obratnykh zadach s razlichnymi tipami istochnikov atmosfernogo zagryazneniya”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2008, no. 2(3), 47–55

[5] V.V. Penenko, “Variatsionnye metody usvoeniya dannykh i obratnye zadachi dlya izucheniya atmosfery, okeana i okruzhayuschei sredy”, Sib. zhurn. vychisl. Matem., 12:4 (2009), 421–434 | MR | Zbl

[6] C.Y. Yang, “Solving the two-dimensional inverse heat source problem through the linear least-squares error method”, International Journal of Heat and Mass Transfer, 41:2 (1998), 393–398 | DOI | Zbl

[7] A.V. Starchenko, E.A. Panasenko, “Parallelnye algoritmy dlya resheniya obratnykh zadach perenosa primesi”, Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 14:5(40) (2010), 133–139

[8] A.V. Mamonov, Y-H.R. Tsai, “Point Source Identification in Nonlinear Advection-Diffusion-Reaction Systems”, Inverse Problems, 29:3 (2013), 26 | DOI | MR | Zbl

[9] X. Deng, Y. Zhao, J. Zou, “On Linear Finite Elements for Simultaneously Recovering Source Location and Intensity”, Int. J. Numer. Anal. Model., 10:3 (2013), 588–602 | MR | Zbl

[10] N. Verdiere, G. Joly-Blanchard, L. Denis-Vidal, “Identifiability and Identification of a Pollution Source in a River by Using a Semi-Discretized Model”, Applied Mathematics and Computation, 221 (2013), 1–9 | DOI | MR | Zbl

[11] M. Mazaheri, J.M.V. Samani, H.M.V. Samani, “Mathematical Model for Pollution Source Identification in Rivers”, Environmental Forensics, 16:4 (2015), 310–321 | DOI

[12] J. Su, “Heat Source Estimation with the Conjugate Gradient Method in Inverse Linear Diffusive Problems”, J. Braz. Soc. Mech. Sci., 23:3 (2001), 321–334 | DOI

[13] A.J.S. Neto, M.N. Oziik, “Two-dimensional Inverse Heat Conduction Problem of Estimating the Timevarying Strength of a Line Heat Source”, Journal of Applied Physics, 71:11 (1992), 53–57 | DOI

[14] E. Milnes, P. Perrochet, “Simultaneous Identification of a Single Pollution Point-Source Location and Contamination Time under Known Flow Field Conditions”, Advances in Water Resources, 30:12 (2007), 2439–2446 | DOI

[15] F.B. Liu, “A Modified Genetic Algorithm for Solving the Inverse Heat Transfer Problem of Estimating Plan Heat Source”, International Journal of Heat and Mass Transfer, 51:15–16 (2008), 3745–3752 | DOI | Zbl

[16] Penenko A. V., Rakhmetullina S. Zh., “Algoritmy lokalizatsii istochnikov zagryazneniya atmosfernogo vozdukha na osnove dannykh avtomatizirovannoi sistemy ekologicheskogo monitoringa”, Sib. elektron. matem. Izv., 10 (2013), C.35–C.54

[17] A. El Badia, T. Ha-Duong, A. Hamdi, “Identification of a Point Source in a Linear Advection-Dispersion-Reaction Equation: Application to a Pollution Source Problem”, Inverse Problems, 21:3 (2005), 1121–1136 | DOI | MR | Zbl

[18] A. El Badia, A. Hamdi, “Inverse Source Problem in an Advection-Dispersion-Reaction System: Application to Water Pollution”, Inverse Problems, 23:5 (2007), 2103–2120 | DOI | MR | Zbl

[19] A. El Badia, T. Ha-Duong, “Inverse Source Problem for the Heat Equation: Application to a Pollution Detection problem”, J. Inverse Ill-Posed Probl., 10:6 (2002), 585–599 | DOI | MR | Zbl

[20] A. El Badia, T. Ha-Duong, “An Inverse Source Problem in Potential Analysis”, Inverse Problems, 16:3 (2000), 651–663 | DOI | MR | Zbl

[21] L. Ling, T. Takeuchi, “Point Sources Identification Problems for Heat Equations”, Commun. Comput. Phys., 5:5 (2009), 897–913 | MR | Zbl

[22] S.G. Pyatkov, E.I. Safonov, “Point Sources Recovering Problems for the One-Dimensional Heat Equation”, Journal of Advanced Research in Dynamical and Control Systems, 11:01 (2019), 496–510 http://www.jardcs.org/abstract.php?id=100#

[23] S.G. Pyatkov, L.V. Neustroeva, “On Some Asymptotic Representations of Solutions to Elliptic Equations and Their Applications”, Complex Variables and Elliptic Equations, 66:6–7 (2021), 964–987 | DOI | MR | Zbl

[24] H. Triebel, Interpolation Theory. Function Spaces. Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 528 pp. | MR

[25] H. Amann, “Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems”, Function Spaces, Differential Operators and Nonlinear Analysis, Teubner-Texte Math., 133, Teubner, Stuttgart, 1993, 9–126 | DOI | MR | Zbl

[26] Neustroeva L. V., Pyatkov S. G., “On Recovering a Point Source in Some Heat and Mass Transfer Problems”, AIP Conference Proceedings, 2328 (2021), 020006 | DOI

[27] R. Denk, R.M. Hieber, J. Prüss, “Fourier Multipliers and Problems of Elliptic and Parabolic Type”, Mem. Amer. Math. Soc., 166, no. 788, 2003 | MR

[28] Y.-K. Hsu, T.M. Holsen, P.K. Hopke, “Comparison of Hybrid Receptor Models to Locate PCB Sources in Chicago”, Atmospheric Environment, 37 (2003), 545–562 | DOI

[29] E. Safonov, S. Pyatkov, “On Some Classes of Inverse Problems on Determining the Source Function”, Proc. of the 8th Scientific Conference on Information Technologies for Intelligent Decision Making Support, ITIDS2020, Atlantis Press, 2020, 242–248

[30] V.S. Vladimirov, V.V. Zharinov, Uravneniya matematicheskoi fiziki, ucheb. dlya studentov vuzov, Fizmatlit, M., 2004, 398 pp.

[31] A.G. Sveshnikov, A.N. Bogolyubov, V.V. Kravtsov, Lektsii po matematicheskoi fizike, Izd-vo MGU, M., 1993, 351 pp. | MR

[32] G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1944, 804 pp. | MR | Zbl

[33] M.F. Kozhevnikova, V.V. Levenets, I.L. Rolik, “The Pollution Source Identification: Computational Approach”, Problems of Atomic Science and Technology, 2011, no. 6, 149–156

[34] L. Zhou, P.K. Hopke, W. Liu, “Comparison of Two Trajectory Based Models for Locating Particle Sources for Two Rural New York sites”, Atmospheric Environment, 38:13 (2004), 1955–1963 | DOI

[35] Y.-J. Han, T.M. Holsen, P.K. Hopke et al., “Identification of Source Location for Atmospheric Dry Deposition of Heavy Metals During Yellow-Sand Events in Seoul, Korea in 1998 Using Hybrid Receptor Models”, Atmospheric Environment, 38 (1998), 5353–5361 | DOI

[36] N.J. Pekney, C.I. Davidson, L. Zhow, P.K. Hopke, “Application of PSCF and CPF to PMF-Modeled Sources of PM$_{2.5}$ in Pittsburgh”, Aerosol Science and Technology, 40:10 (2006), 952–961 | DOI

[37] E.C. Tichmarsh, Theory of Functions, Oxford University press, Oxford, 1939, 454 pp. | MR