On one modification of Nash equilibrium
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 2, pp. 13-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By the end of the last century there were four areas in the mathematical theory of positional differential games: non-coalitional positional differential games, cooperative, hierarchical and, finally, the least-understood coalitional positional differential games. In their turn, coalitional games are divided into games with transferable payoffs (games with side payments when players can split profits in the course of the game) and with non-transferable payoffs (games with side payments when there are no such distributions for this or that reason). The coalitional games with side payments are being extensively explored at the Faculties of Applied Mathematics and Management Processes of St. Petersburg University and the Institute of Mathematics and Information Technologies of Petrozavodsk State University (by Professors L.A. Petrosyan, V.V. Mozalov, E.M. Parilina, A.N. Rettieva and their numerous students). However, side payments are not always present even in economic cooperation; moreover, side payments can be legislated against. We believe that the research of the equilibrium of threats and counter-threats (sanctions and counter-sanctions) in non-coalitional differential games that we have carried out over the last years allows to also cover some aspects of non-transferable payoff coalitional games. The article considers the issues of namely the internal and external stability of coalitions in the class of positional differential games. The coefficient constraints were identified for the mathematical model of a linear-quadratic differential positional game with twin-coalitional structure for six persons where this coalitional structure is internally and externally stable.
Keywords: Nash equilibrium, equilibrium of threats and counter-threats, Pareto optimality
Mots-clés : coalition.
@article{VYURM_2022_14_2_a1,
     author = {V. I. Zhukovskiy and L. V. Zhukovskaya and K. N. Kudryavtsev and V. E. Romanova},
     title = {On one modification of {Nash} equilibrium},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {13--30},
     year = {2022},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a1/}
}
TY  - JOUR
AU  - V. I. Zhukovskiy
AU  - L. V. Zhukovskaya
AU  - K. N. Kudryavtsev
AU  - V. E. Romanova
TI  - On one modification of Nash equilibrium
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 13
EP  - 30
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a1/
LA  - ru
ID  - VYURM_2022_14_2_a1
ER  - 
%0 Journal Article
%A V. I. Zhukovskiy
%A L. V. Zhukovskaya
%A K. N. Kudryavtsev
%A V. E. Romanova
%T On one modification of Nash equilibrium
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 13-30
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a1/
%G ru
%F VYURM_2022_14_2_a1
V. I. Zhukovskiy; L. V. Zhukovskaya; K. N. Kudryavtsev; V. E. Romanova. On one modification of Nash equilibrium. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 2, pp. 13-30. http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a1/

[1] E.M. Parilina, L.A. Petrosyan, “Novyi podkhod k opredeleniyu kharakteristicheskoi funktsii v stokhasticheskikh igrakh”, Ustoichivost, upravlenie, differentsialnye igry, SCDG2019, Materialy Mezhdunarodnoi konferentsii, posvyaschennoi 95-letiyu so dnya rozhdeniya akademika N. N. Krasovskogo (Ekaterinburg, 16–20 sentyabrya 2019 g.), IMM UrO RAN, Ekaterinburg, 2019, 243–247

[2] E. Parilina, L. Petrosyan, “On a Simplified Method of Defining Characteristic Function in Stochastic Games”, Mathematics, 8:7 (2020), 1135 | DOI

[3] V.V. Mazalov, A.N. Rettieva, “Fish wars and cooperation maintenance”, Ecological Modelling, 221:12 (2010), 1545–1553 | DOI

[4] V. Mazalov, E. Parilina, “The Euler-Equation Approach in Average-Oriented Opinion Dynamics”, Mathematics, 8:3 (2020), 355 | DOI

[5] V.I. Zhukovskii, Yu.N. Zhiteneva, Yu.A. Belskikh, “Paretovskoe ravnovesie ugroz i kontrugroz v odnoi differentsialnoi igre trekh lits”, Matematicheskaya teoriya igr i ee prilozheniya, 11:1 (2019), 39–72 | MR | Zbl

[6] V.I. Zhukovskii, K.N. Kudryavtsev, L.V. Zhukovskaya, I.S. Stabulit, “K individualnoi ustoichivosti paretovskogo ravnovesiya ugroz i kontrugroz v odnoi koalitsionnoi differentsialnoi igre s netransferabelnymi vyigryshami”, Matematicheskaya teoriya igr i ee prilozheniya, 13:1 (2021), 89–101 | MR | Zbl

[7] M.E. Salukvadze, V.I. Zhukovskii, The Berge Equilibrium: A Game-Theoretic Framework for the Golden Rule of Ethics, Birkhäuser, Basel, 2020, 272 pp. | MR | Zbl

[8] V.I. Zhukovskiy, M.E. Salukvadze, A.Yu. Mazurov, The Golden Rule of Ethics: A Dynamic Game-Theoretic Framework Based on Berge Equilibrium, Taylor and Francis, London–New York, 2021, 324 pp. | MR

[9] V.I. Zhukovskii, N.T. Tynyanskii, Ravnovesnye upravleniya mnogokriterialnykh dinamicheskikh sistem, MGU, M., 1984, 224 pp.

[10] V.I. Zhukovskii, A.A. Chikrii, Differentsialnye uravneniya. Lineino-kvadratichnye differentsialnye igry, uchebnoe posobie dlya vuzov, 2-e izd., ispr. i dop., Izd-vo Yurait, M., 2020, 322 pp.

[11] V.V. Podinovskii, V.D. Nogin, Pareto-optimalnye resheniya mnogokriterialnykh zadach, Fizmatlit, M., 2007, 255 pp.

[12] S. Karlin, Matematicheskie metody v teorii igr, programmirovanii i ekonomike, Mir, M., 1964, 838 pp.

[13] N.N. Krasovskii, A.I. Subbotin, Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[14] V.V. Voevodin, Yu.A. Kuznetsov, Matritsy i vychisleniya, Nauka, M., 1984, 318 pp. | MR

[15] W.V. Parker, “The characteristic roots of a matrix”, Duke Math. J., 3:3 (1937), 484–487 | DOI | MR