Mots-clés : coalition.
@article{VYURM_2022_14_2_a1,
author = {V. I. Zhukovskiy and L. V. Zhukovskaya and K. N. Kudryavtsev and V. E. Romanova},
title = {On one modification of {Nash} equilibrium},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {13--30},
year = {2022},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a1/}
}
TY - JOUR AU - V. I. Zhukovskiy AU - L. V. Zhukovskaya AU - K. N. Kudryavtsev AU - V. E. Romanova TI - On one modification of Nash equilibrium JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2022 SP - 13 EP - 30 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a1/ LA - ru ID - VYURM_2022_14_2_a1 ER -
%0 Journal Article %A V. I. Zhukovskiy %A L. V. Zhukovskaya %A K. N. Kudryavtsev %A V. E. Romanova %T On one modification of Nash equilibrium %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2022 %P 13-30 %V 14 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a1/ %G ru %F VYURM_2022_14_2_a1
V. I. Zhukovskiy; L. V. Zhukovskaya; K. N. Kudryavtsev; V. E. Romanova. On one modification of Nash equilibrium. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 2, pp. 13-30. http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a1/
[1] E.M. Parilina, L.A. Petrosyan, “Novyi podkhod k opredeleniyu kharakteristicheskoi funktsii v stokhasticheskikh igrakh”, Ustoichivost, upravlenie, differentsialnye igry, SCDG2019, Materialy Mezhdunarodnoi konferentsii, posvyaschennoi 95-letiyu so dnya rozhdeniya akademika N. N. Krasovskogo (Ekaterinburg, 16–20 sentyabrya 2019 g.), IMM UrO RAN, Ekaterinburg, 2019, 243–247
[2] E. Parilina, L. Petrosyan, “On a Simplified Method of Defining Characteristic Function in Stochastic Games”, Mathematics, 8:7 (2020), 1135 | DOI
[3] V.V. Mazalov, A.N. Rettieva, “Fish wars and cooperation maintenance”, Ecological Modelling, 221:12 (2010), 1545–1553 | DOI
[4] V. Mazalov, E. Parilina, “The Euler-Equation Approach in Average-Oriented Opinion Dynamics”, Mathematics, 8:3 (2020), 355 | DOI
[5] V.I. Zhukovskii, Yu.N. Zhiteneva, Yu.A. Belskikh, “Paretovskoe ravnovesie ugroz i kontrugroz v odnoi differentsialnoi igre trekh lits”, Matematicheskaya teoriya igr i ee prilozheniya, 11:1 (2019), 39–72 | MR | Zbl
[6] V.I. Zhukovskii, K.N. Kudryavtsev, L.V. Zhukovskaya, I.S. Stabulit, “K individualnoi ustoichivosti paretovskogo ravnovesiya ugroz i kontrugroz v odnoi koalitsionnoi differentsialnoi igre s netransferabelnymi vyigryshami”, Matematicheskaya teoriya igr i ee prilozheniya, 13:1 (2021), 89–101 | MR | Zbl
[7] M.E. Salukvadze, V.I. Zhukovskii, The Berge Equilibrium: A Game-Theoretic Framework for the Golden Rule of Ethics, Birkhäuser, Basel, 2020, 272 pp. | MR | Zbl
[8] V.I. Zhukovskiy, M.E. Salukvadze, A.Yu. Mazurov, The Golden Rule of Ethics: A Dynamic Game-Theoretic Framework Based on Berge Equilibrium, Taylor and Francis, London–New York, 2021, 324 pp. | MR
[9] V.I. Zhukovskii, N.T. Tynyanskii, Ravnovesnye upravleniya mnogokriterialnykh dinamicheskikh sistem, MGU, M., 1984, 224 pp.
[10] V.I. Zhukovskii, A.A. Chikrii, Differentsialnye uravneniya. Lineino-kvadratichnye differentsialnye igry, uchebnoe posobie dlya vuzov, 2-e izd., ispr. i dop., Izd-vo Yurait, M., 2020, 322 pp.
[11] V.V. Podinovskii, V.D. Nogin, Pareto-optimalnye resheniya mnogokriterialnykh zadach, Fizmatlit, M., 2007, 255 pp.
[12] S. Karlin, Matematicheskie metody v teorii igr, programmirovanii i ekonomike, Mir, M., 1964, 838 pp.
[13] N.N. Krasovskii, A.I. Subbotin, Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR
[14] V.V. Voevodin, Yu.A. Kuznetsov, Matritsy i vychisleniya, Nauka, M., 1984, 318 pp. | MR
[15] W.V. Parker, “The characteristic roots of a matrix”, Duke Math. J., 3:3 (1937), 484–487 | DOI | MR