Linear differential holding game with a break
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 2, pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A linear simple motion constraint differential game is considered. This game is considered from the part of the first player, who needs to keep the state of the system in a given convex terminal set throughout the game, despite the possible glitch and control of the second player. A glitch is understood as an instantaneous stop of the first player at a previously unknown point in time; after a certain time he will eliminate the glitch and will continue his motion. The player control vectograms are $n$-dimensional convex compacts that depend on time. To construct a $u$-stable bridge, the second method of L.S. Pontryagin is used. This is how a multi-valued mapping is constructed on the basis of the alternating integral of L.S. Pontryagin. After that, it is proved that the constructed mapping is a $u$-stable bridge for the game under consideration if a number of conditions are satisfied. At the end of the article, a simple example on the plane is considered, where the vectors of the players are circles centered at the origin and with a constant radius, while the radius of the circle of the first player is strictly greater than the second. In this example, a $u$-stable bridge is built according to the method proposed in the article, and an extremal strategy is found for the first player on the constructed $u$-stable bridge.
Keywords: differential game, alternating integral, stable bridge.
Mots-clés : constraint
@article{VYURM_2022_14_2_a0,
     author = {V. O. Anisov},
     title = {Linear differential holding game with a break},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {5--12},
     year = {2022},
     volume = {14},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a0/}
}
TY  - JOUR
AU  - V. O. Anisov
TI  - Linear differential holding game with a break
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 5
EP  - 12
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a0/
LA  - ru
ID  - VYURM_2022_14_2_a0
ER  - 
%0 Journal Article
%A V. O. Anisov
%T Linear differential holding game with a break
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 5-12
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a0/
%G ru
%F VYURM_2022_14_2_a0
V. O. Anisov. Linear differential holding game with a break. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 2, pp. 5-12. http://geodesic.mathdoc.fr/item/VYURM_2022_14_2_a0/

[1] M.S. Nikolskii, “O zadache upravleniya lineinoi sistemoi s narusheniyami”, Dokl. AN SSSR, 287:6 (1986), 1317–1320 | MR | Zbl

[2] M.S. Nikolskii, “Ob odnoi zadache upravleniya s narusheniyami v dinamike”, Optimalnoe upravlenie i differentsialnye igry, sb. nauch. rabot, Tr. MIAN SSSR, 185, 1988, 181–186

[3] M.S. Nikolskii, Chzh. Pen, “Differentsialnaya igra presledovaniya s narusheniem v dinamike”, Differentsialnye uravneniya, 30:11 (1994), 1923–1927 | MR | Zbl

[4] M.S. Nikolskii, “Upravlenie lineinymi ob'ektami s vozmozhnym narusheniem v dinamike”, Tr. IMM UrO RAN, 3, 1995, 132–146 | MR | Zbl

[5] L.S. Pontryagin, “O lineinykh differentsialnykh igrakh. 2”, Dokl. AN SSSR, 175:4 (1967), 764–766 | Zbl

[6] N.N. Krasovskii, A.I. Subbotin, Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[7] V.I. Ukhobotov, Metod odnomernogo proektirovaniya v lineinykh differentsialnykh igrakh s integralnymi ogranicheniyami, ucheb. posobie, Izd-vo Chelyabinskogo gos. un-ta, 2005, 123 pp.

[8] A.N. Kolmogorov, S.V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Izd-vo Nauka, 1976, 543 pp. | MR

[9] J.-P. Aubin, H. Frankowska, Set-valued analysis, Birkhäuser, 1990, 461 pp. | MR | Zbl

[10] V.I. Ukhobotov, “Odnotipnye differentsialnye igry s vypukloi tselyu”, Tr. IMM UrO RAN, 16, no. 5, 2010, 196–204