Analysis of the boundary value problem for the Poisson equation
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 1, pp. 64-76
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The mixed boundary value problem for the Poisson equation is considered in a bounded flat domain. The continuation of this problem through the boundary with the Dirichlet condition to a rectangular domain is carried out. Consideration of the continued problem in the operator form is proposed. To solve the continued problem, a method of iterative extensions is formulated in an operator form. The extended problem in operator form is considered on a finite-dimensional subspace. To solve the previous problem, an iterative extension method is formulated in operator form on a finite-dimensional subspace. The continued problem is presented in matrix form. To solve the continued problem in matrix form, the method of iterative extensions in matrix form is formulated. It is shown that in the proposed versions of the method of iterative extensions, the relative errors converge in a rate that is stronger than the energy norm of the extended problem with the rate of geometric progression. The iterative parameters in these methods are selected using the minimum residual method. Conditions are indicated that are sufficient for the convergence of the applied iterative processes. An algorithm is written that implements the method of iterative extensions in matrix form. In this algorithm, the iterative parameters are automatically selected and the stopping criterion is indicated when the estimate of the required accuracy is reached. Examples of application of the method of iterative extensions for solving problems on a computer are given.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
method of iterative extensions.
Mots-clés : Poisson's equation
                    
                  
                
                
                Mots-clés : Poisson's equation
@article{VYURM_2022_14_1_a6,
     author = {A. L. Ushakov},
     title = {Analysis of the boundary value problem for the {Poisson} equation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {64--76},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a6/}
}
                      
                      
                    TY - JOUR AU - A. L. Ushakov TI - Analysis of the boundary value problem for the Poisson equation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2022 SP - 64 EP - 76 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a6/ LA - en ID - VYURM_2022_14_1_a6 ER -
%0 Journal Article %A A. L. Ushakov %T Analysis of the boundary value problem for the Poisson equation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2022 %P 64-76 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a6/ %G en %F VYURM_2022_14_1_a6
A. L. Ushakov. Analysis of the boundary value problem for the Poisson equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 1, pp. 64-76. http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a6/
