Keywords: deterministic and stochastic Sobolev-type equations, Nelson-Gliklikh derivative, Wentzell condition, Showalter-Sidorov condition
@article{VYURM_2022_14_1_a5,
author = {G. A. Sviridyuk and N. S. Goncharov and S. A. Zagrebina},
title = {The {Showalter-Sidorov} and {Cauchy} problems for the linear {Dzekzer} equation with {Wentzell} and {Robin} boundary conditions in a bounded domain},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {50--63},
year = {2022},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a5/}
}
TY - JOUR AU - G. A. Sviridyuk AU - N. S. Goncharov AU - S. A. Zagrebina TI - The Showalter-Sidorov and Cauchy problems for the linear Dzekzer equation with Wentzell and Robin boundary conditions in a bounded domain JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2022 SP - 50 EP - 63 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a5/ LA - ru ID - VYURM_2022_14_1_a5 ER -
%0 Journal Article %A G. A. Sviridyuk %A N. S. Goncharov %A S. A. Zagrebina %T The Showalter-Sidorov and Cauchy problems for the linear Dzekzer equation with Wentzell and Robin boundary conditions in a bounded domain %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2022 %P 50-63 %V 14 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a5/ %G ru %F VYURM_2022_14_1_a5
G. A. Sviridyuk; N. S. Goncharov; S. A. Zagrebina. The Showalter-Sidorov and Cauchy problems for the linear Dzekzer equation with Wentzell and Robin boundary conditions in a bounded domain. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 1, pp. 50-63. http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a5/
[1] E.S. Dzektser, “Obobschenie uravneniya dvizheniya gruntovykh vod so svobodnoi poverkhnostyu”, Dokl. AN SSSR, 202:5 (1972), 1031–1033
[2] G.A. Sviridyuk, S.A. Zagrebina, “Zadacha Shouoltera-Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya «Matematika», 3:1 (2010), 104–125
[3] A.D. Venttsel, “O granichnykh usloviyakh dlya mnogomernykh diffuzionnykh protsessov”, Teoriya veroyatnostei i ee primeneniya, 4:2 (1959), 172–185
[4] V. Feller, “Odnomernye diffuzionnye protsessy”, Matematika, 2:2 (1958), 119–146
[5] Y. Luo, N.S. Trudinger, “Linear Second Order Elliptic Equations with Venttsel Boundary Conditions”, Proc. Royal Society of Edinburgh Section A: Mathematics, 118:3–4 (1991), 193–207
[6] G.R. Goldstein, “Derivation and Physical Interpretation of General Boundary Conditions”, Advances in Differential Equations, 11:14 (2006), 457–480
[7] D.E. Apushinskaya, A.I. Nazarov, “Nachalno-kraevaya zadacha s granichnym usloviem Venttselya dlya nedivergentnykh parabolicheskikh uravnenii”, Algebra i analiz, 6:6 (1994), 1–29
[8] V.V. Lukyanov, A.I. Nazarov, “Reshenie zadachi Venttselya dlya uravneniya Laplasa i Gelmgoltsa s pomoschyu povtornykh potentsialov”, Zap. nauchn. sem. POMI, 250, 1998, 203–218
[9] A. Favini, G.R. Goldstein, J.A. Goldstein, S. Romanelli, “C$_0$-Semigroups Generated by Second order Differential Operators with General Wentzell Boundary Conditions”, Proc. Amer. Math. Soc., 128:7 (2000), 1981–1989
[10] A. Favini, G.R. Goldstein, J.A. Goldstein, S. Romanelli, “The heat equation with generalized Wentzell boundary condition”, J. Evol. Equ., 2:1 (2002), 1–19
[11] G.M. Coclite, A. Favini, C.G. Gal et al., “The Role of Wentzell Boundary Conditions in Linear and Nonlinear Analysis”, Advances in Nonlinear Analysis: Theory, Methods and Applications, 3 (2009), 279–292
[12] K.-J. Engel, G. Fragnelli, “Analyticity of Semigroups Generated by Operators with Generalized Wentzell Boundary Conditions”, Advances in Differential Equations, 10:11 (2005), 1301–1320
[13] R. Denk, M. Kunze, D. Ploss, “The Bi-Laplacian with Wentzell Boundary Conditions on Lipschitz Domains”, Integral Equations and Operator Theory, 93:2 (2021), 13, 26 pp.
[14] Kh. Tribel, Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980, 664 pp.
[15] G.A. Sviridyuk, V.E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 216 pp.
[16] A. Favini, G.A. Sviridyuk, N.A. Manakova, “Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of “noises””, Abstract and Applied Analysis, 2015 (2015), 697410
[17] A. Favini, G.A. Sviridyuk, A.A. Zamyshlyaeva, “One class of Sobolev Type Equations of Higher Order with Additive “White Noise””, Communications on Pure and Applied Analysis, 15:1 (2016), 185–196
[18] K.V. Vasyuchkova, N.A. Manakova, G.A. Sviridyuk, “Some Mathematical Models with a Relatively Bounded Operator and Additive “White Noise” in Spaces of Sequences”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 10:4 (2017), 5–14
[19] S. Zagrebina, T. Sukacheva, G. Sviridyuk, “The Multipoint Initial-Final Value Problems for Linear Sobolev-Type Equations with Relatively P-sectorial Operator and Additive “Noise””, Global and Stochastic Analysis, 5:2 (2018), 129–143
[20] Yu.E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, N.Y.–London–Dordrecht–Heidelberg, 2011, 436 pp.
[21] E. Nelson, Dynamical theory of Brownian motion, Princeton University Press, Princeton, 1967, 142 pp.
[22] Yu.E. Gliklikh, E.Yu. Mashkov, “Stochastic Leontieff type equations and mean derivatives of stochastic processes”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 6:2 (2013), 25–39