The Showalter-Sidorov and Cauchy problems for the linear Dzekzer equation with Wentzell and Robin boundary conditions in a bounded domain
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 1, pp. 50-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Deterministic and stochastic initial boundary value problems for the Dzekzer equation describing the evolution of the free surface of a filtering fluid in a bounded region with a smooth boundary are considered. Wentzell and Robin conditions are set on the boundary of the domain, and either the Showalter-Sidorov condition or the Cauchy condition is taken as the initial condition. Note that for the filtration model under study, the Wentzell condition is considered, which is not a classical condition. In recent years, the boundary condition has been considered in the mathematical literature from two points of view (classical and neoclassical). Since Cauchy and Showalter-Sidorov initial conditions have been studied earlier in various situations, in this work, in the particular case of classical Wentzell and Robin conditions, by methods of the theory of degenerate holomorphic semigroups, exact solutions have been constructed, which allow to determine quantitative predictions of changes in geochemical regime of groundwater under unpressurized filtration. Nelson-Glicklich derivative theory was used in stochastic case. In particular, the investigation of the set problems in the context of Wentzell boundary conditions allowed to determine the processes occurring at the boundary of two media (in the region and at its boundary).
Mots-clés : Dzekzer equation, Cauchy condition.
Keywords: deterministic and stochastic Sobolev-type equations, Nelson-Gliklikh derivative, Wentzell condition, Showalter-Sidorov condition
@article{VYURM_2022_14_1_a5,
     author = {G. A. Sviridyuk and N. S. Goncharov and S. A. Zagrebina},
     title = {The {Showalter-Sidorov} and {Cauchy} problems for the linear {Dzekzer} equation with {Wentzell} and {Robin} boundary conditions in a bounded domain},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {50--63},
     year = {2022},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a5/}
}
TY  - JOUR
AU  - G. A. Sviridyuk
AU  - N. S. Goncharov
AU  - S. A. Zagrebina
TI  - The Showalter-Sidorov and Cauchy problems for the linear Dzekzer equation with Wentzell and Robin boundary conditions in a bounded domain
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 50
EP  - 63
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a5/
LA  - ru
ID  - VYURM_2022_14_1_a5
ER  - 
%0 Journal Article
%A G. A. Sviridyuk
%A N. S. Goncharov
%A S. A. Zagrebina
%T The Showalter-Sidorov and Cauchy problems for the linear Dzekzer equation with Wentzell and Robin boundary conditions in a bounded domain
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 50-63
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a5/
%G ru
%F VYURM_2022_14_1_a5
G. A. Sviridyuk; N. S. Goncharov; S. A. Zagrebina. The Showalter-Sidorov and Cauchy problems for the linear Dzekzer equation with Wentzell and Robin boundary conditions in a bounded domain. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 1, pp. 50-63. http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a5/

[1] E.S. Dzektser, “Obobschenie uravneniya dvizheniya gruntovykh vod so svobodnoi poverkhnostyu”, Dokl. AN SSSR, 202:5 (1972), 1031–1033

[2] G.A. Sviridyuk, S.A. Zagrebina, “Zadacha Shouoltera-Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya «Matematika», 3:1 (2010), 104–125

[3] A.D. Venttsel, “O granichnykh usloviyakh dlya mnogomernykh diffuzionnykh protsessov”, Teoriya veroyatnostei i ee primeneniya, 4:2 (1959), 172–185

[4] V. Feller, “Odnomernye diffuzionnye protsessy”, Matematika, 2:2 (1958), 119–146

[5] Y. Luo, N.S. Trudinger, “Linear Second Order Elliptic Equations with Venttsel Boundary Conditions”, Proc. Royal Society of Edinburgh Section A: Mathematics, 118:3–4 (1991), 193–207

[6] G.R. Goldstein, “Derivation and Physical Interpretation of General Boundary Conditions”, Advances in Differential Equations, 11:14 (2006), 457–480

[7] D.E. Apushinskaya, A.I. Nazarov, “Nachalno-kraevaya zadacha s granichnym usloviem Venttselya dlya nedivergentnykh parabolicheskikh uravnenii”, Algebra i analiz, 6:6 (1994), 1–29

[8] V.V. Lukyanov, A.I. Nazarov, “Reshenie zadachi Venttselya dlya uravneniya Laplasa i Gelmgoltsa s pomoschyu povtornykh potentsialov”, Zap. nauchn. sem. POMI, 250, 1998, 203–218

[9] A. Favini, G.R. Goldstein, J.A. Goldstein, S. Romanelli, “C$_0$-Semigroups Generated by Second order Differential Operators with General Wentzell Boundary Conditions”, Proc. Amer. Math. Soc., 128:7 (2000), 1981–1989

[10] A. Favini, G.R. Goldstein, J.A. Goldstein, S. Romanelli, “The heat equation with generalized Wentzell boundary condition”, J. Evol. Equ., 2:1 (2002), 1–19

[11] G.M. Coclite, A. Favini, C.G. Gal et al., “The Role of Wentzell Boundary Conditions in Linear and Nonlinear Analysis”, Advances in Nonlinear Analysis: Theory, Methods and Applications, 3 (2009), 279–292

[12] K.-J. Engel, G. Fragnelli, “Analyticity of Semigroups Generated by Operators with Generalized Wentzell Boundary Conditions”, Advances in Differential Equations, 10:11 (2005), 1301–1320

[13] R. Denk, M. Kunze, D. Ploss, “The Bi-Laplacian with Wentzell Boundary Conditions on Lipschitz Domains”, Integral Equations and Operator Theory, 93:2 (2021), 13, 26 pp.

[14] Kh. Tribel, Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980, 664 pp.

[15] G.A. Sviridyuk, V.E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 216 pp.

[16] A. Favini, G.A. Sviridyuk, N.A. Manakova, “Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of “noises””, Abstract and Applied Analysis, 2015 (2015), 697410

[17] A. Favini, G.A. Sviridyuk, A.A. Zamyshlyaeva, “One class of Sobolev Type Equations of Higher Order with Additive “White Noise””, Communications on Pure and Applied Analysis, 15:1 (2016), 185–196

[18] K.V. Vasyuchkova, N.A. Manakova, G.A. Sviridyuk, “Some Mathematical Models with a Relatively Bounded Operator and Additive “White Noise” in Spaces of Sequences”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 10:4 (2017), 5–14

[19] S. Zagrebina, T. Sukacheva, G. Sviridyuk, “The Multipoint Initial-Final Value Problems for Linear Sobolev-Type Equations with Relatively P-sectorial Operator and Additive “Noise””, Global and Stochastic Analysis, 5:2 (2018), 129–143

[20] Yu.E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, N.Y.–London–Dordrecht–Heidelberg, 2011, 436 pp.

[21] E. Nelson, Dynamical theory of Brownian motion, Princeton University Press, Princeton, 1967, 142 pp.

[22] Yu.E. Gliklikh, E.Yu. Mashkov, “Stochastic Leontieff type equations and mean derivatives of stochastic processes”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 6:2 (2013), 25–39