Exact estimates and radii of convexity of some classes of analytic functions
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 1, pp. 42-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The study of the geometric properties of analytic functions is one of the classical problems of the theory of functions of a complex variable and has been of steady interest to many mathematicians for more than half a century now. At the same time, a separate area is the building of sufficient conditions of one-leaf analytic functions, including finding the conditions for simple geometric properties of analytic functions (convex or star-shaped, almost starshaped, etc.). The solution of these problems in many cases is associated with finding estimates in different classes of analytical functions, which in itself is also a relevant problem. This article is devoted to finding exact estimates of analytic functions and their derivatives in fairly broad classes of functions, which are distinguished in the form of some restrictions on the domains obtained from the domains of values of these functions by circular symmetrization or symmetrization with respect to a straight line. Based on these results, the exact radii of convexity in some classes of functions are found.
Keywords: geometric theory of functions of a complex variable, domain symmetrization, estimates of analytic functions, one-leaf functions, radii of convexity of analytic functions.
@article{VYURM_2022_14_1_a4,
     author = {F. F. Maiyer and M. G. Tastanov and A. A. Utemissova and S. A. Kozlovskiy},
     title = {Exact estimates and radii of convexity of some classes of analytic functions},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {42--49},
     year = {2022},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a4/}
}
TY  - JOUR
AU  - F. F. Maiyer
AU  - M. G. Tastanov
AU  - A. A. Utemissova
AU  - S. A. Kozlovskiy
TI  - Exact estimates and radii of convexity of some classes of analytic functions
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 42
EP  - 49
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a4/
LA  - ru
ID  - VYURM_2022_14_1_a4
ER  - 
%0 Journal Article
%A F. F. Maiyer
%A M. G. Tastanov
%A A. A. Utemissova
%A S. A. Kozlovskiy
%T Exact estimates and radii of convexity of some classes of analytic functions
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 42-49
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a4/
%G ru
%F VYURM_2022_14_1_a4
F. F. Maiyer; M. G. Tastanov; A. A. Utemissova; S. A. Kozlovskiy. Exact estimates and radii of convexity of some classes of analytic functions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 1, pp. 42-49. http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a4/

[1] G.M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp.

[2] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962, 336 pp.

[3] I.P. Mityuk, Primenenie simmetrizatsionnykh metodov v geometricheskoi teorii funktsii, KubGU, Krasnodar, 1985, 94 pp.

[4] F.G. Avkhadiev, L.A. Aksentev, “Osnovnye rezultaty v dostatochnykh usloviyakh odnolistnosti analiticheskikh funktsii”, UMN, 30:4(184) (1975), 3–60

[5] F.G. Avkhadiev, “Radiusy vypuklosti i pochti vypuklosti nekotorykh integralnykh predstavlenii”, Mat. zametki, 7:5 (1970), 581–592

[6] O. Engel, P.A. Kupán, Á.O. Páll-Szabo, “About the Radius of Convexity of some Analytic Functions”, Creat. Math. Inform., 24:2 (2015), 155–161

[7] M.R. Kadieva, F.F. Maier, “Uslovie vypuklosti obobschennogo integrala Bernatskogo dlya odnogo podklassa zvezdoobraznykh funktsii”, Vestnik KazNPU im. Abaya, seriya «Fiziko-matematicheskie nauki», 69:1 (2021), 111–118 https://bulletin-phmath.kaznpu.kz/index.php/ped/article/view/214

[8] F.F. Maier, A.A. Shalagina, “Tochnye otsenki garmonicheskikh i periodicheskikh funktsii i nekotorye ikh primeneniya”, Vestnik KazNPU im. Abaya, seriya «Fiziko-matematicheskie nauki», 68:4 (2019), 71–76

[9] G. Szegö, “On the capacity of a condenser”, Bull. Amer. Math. Soc., 51 (1945), 325–350

[10] V.K. Kheiman, Mnogolistnye funktsii, Izd-vo inostr. lit., M., 1960, 180 pp.

[11] L.A. Aksentev, F.F. Maier, “Primenenie metodov podchinennosti i simmetrizatsii k dostatochnym priznakam odnolistnosti analiticheskikh funktsii”, Trudy seminara po kraevym zadacham, 19, 1983, 14–28

[12] I.P. Mityuk, “Otsenki v nekotorykh klassakh analiticheskikh funktsii”, Metricheskie voprosy teorii funktsii, Naukova dumka, Kiev, 1980, 90–99

[13] F.Kh. Arslanov, F.F. Maier, K geometricheskim svoistvam nekotorykh klassov analiticheskikh v edinichnom kruge funktsii, dep. VINITI No 5059-V88 24.06.88, 1988, 10 pp.

[14] M.O. Reade, “The Coefficients of Close-to-Convex Functions”, Duke Math. J., 23:3 (1956), 459–462

[15] T. Mac-Gregor, “Functions whosed Derivative has a Positive Real Part”, Trans. Amer. Math. Soc., 104 (1962), 532–537