Keywords: integral conditions, variational statement.
@article{VYURM_2022_14_1_a3,
author = {Sh. I. Maharramli},
title = {Inverse control-type problem of determining highest coefficient for a one-dimensional parabolic equation},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {35--41},
year = {2022},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a3/}
}
TY - JOUR AU - Sh. I. Maharramli TI - Inverse control-type problem of determining highest coefficient for a one-dimensional parabolic equation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2022 SP - 35 EP - 41 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a3/ LA - ru ID - VYURM_2022_14_1_a3 ER -
%0 Journal Article %A Sh. I. Maharramli %T Inverse control-type problem of determining highest coefficient for a one-dimensional parabolic equation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2022 %P 35-41 %V 14 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a3/ %G ru %F VYURM_2022_14_1_a3
Sh. I. Maharramli. Inverse control-type problem of determining highest coefficient for a one-dimensional parabolic equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 1, pp. 35-41. http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a3/
[1] A.D. Iskenderov, “O variatsionnykh postanovkakh mnogomernykh obratnykh zadach matematicheskoi fiziki”, DAN SSSR, 274:3 (1984), 531–533
[2] O.M. Alifanov, E.A. Artyukhin, S.V. Rumyantsev, Ekstremalnye metody resheniya nekorrektnykh zadach i ikh prilozheniya k obratnym zadacham teploobmena, Nauka, M., 1988, 285 pp.
[3] S.I. Kabanikhin, G. Dairbaeva, “Obratnaya zadacha nakhozhdeniya koeffitsienta uravneniya teploprovodnosti”, Mezhdunarodnaya konferentsiya «Obratnye nekorrektnye zadachi matematicheskoi fiziki», posvyaschennaya 75-letiyu akademika M. M. Lavrenteva (20–25 avgusta 2007 g., Novosibirsk, Rossiya), 1–5
[4] S.I. Kabanikhin, Obratnye i nekorrektnye zadachi, Sibirskoe Nauchnoe Izdatelstvo, Novosibirsk, 2009, 457 pp.
[5] A.D. Iskenderov, R.K. Tagiyev, “Variational method solving the problem of identification of the coefficients of quasilinear parabolic problem”, The 7th International Conference «Inverse Problems: Modelling and SIMULATION» (IMPS-2014) (May 26–31, 2014, Turkey), 31
[6] V.M. Gabibov, “Koeffitsientnaya obratnaya zadacha tipa upravleniya dlya parabolicheskogo uravneniya s dopolnitelnym integralnym usloviem”, Vestnik Bakinskogo Universiteta. Ser. fiz.-matem. nauk, 2017, no. 2, 80–91
[7] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp.
[8] V.L. Kamynin, “Ob obratnoi zadache opredeleniya starshego koeffitsienta v parabolicheskom uravnenii”, Matem. zametki, 84:1 (2008), 48–58
[9] R.K. Tagiev, Sh.I. Magerramli, “O razreshimosti nachalno-kraevoi zadachi dlya odnomernogo lineinogo parabolicheskogo uravneniya s integralnym granichnym usloviem”, Vestnik Bakinskogo universiteta. Seriya: Fiziko-matematicheskikh nauk, 2019, no. 2, 17–26
[10] F.P. Vasilev, Metody resheniya ekstremalnykh zadach, Nauka, M., 1981, 400 pp.
[11] A.A. Samarskii, R.D. Lazarov, V.L. Makarov, Raznostnye skhemy dlya differentsialnykh uravnenii s obobschennymi resheniyami, Vyssh. shk., M., 1987, 296 pp.
[12] R.K. Tagiev, “Optimalnoe upravlenie koeffitsientami v parabolicheskikh sistemakh”, Differentsialnye uravneniya, 45:10 (2009), 1492–1501